These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 15313178)
1. Oligomerization of the SARS-CoV S glycoprotein: dimerization of the N-terminus and trimerization of the ectodomain. Xiao X; Feng Y; Chakraborti S; Dimitrov DS Biochem Biophys Res Commun; 2004 Sep; 322(1):93-9. PubMed ID: 15313178 [TBL] [Abstract][Full Text] [Related]
2. Important role for the transmembrane domain of severe acute respiratory syndrome coronavirus spike protein during entry. Broer R; Boson B; Spaan W; Cosset FL; Corver J J Virol; 2006 Feb; 80(3):1302-10. PubMed ID: 16415007 [TBL] [Abstract][Full Text] [Related]
3. Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies. He Y; Lu H; Siddiqui P; Zhou Y; Jiang S J Immunol; 2005 Apr; 174(8):4908-15. PubMed ID: 15814718 [TBL] [Abstract][Full Text] [Related]
4. Receptor-binding domain of SARS-Cov spike protein: soluble expression in E. coli, purification and functional characterization. Chen J; Miao L; Li JM; Li YY; Zhu QY; Zhou CL; Fang HQ; Chen HP World J Gastroenterol; 2005 Oct; 11(39):6159-64. PubMed ID: 16273643 [TBL] [Abstract][Full Text] [Related]
5. Identification and characterization of novel neutralizing epitopes in the receptor-binding domain of SARS-CoV spike protein: revealing the critical antigenic determinants in inactivated SARS-CoV vaccine. He Y; Li J; Du L; Yan X; Hu G; Zhou Y; Jiang S Vaccine; 2006 Jun; 24(26):5498-508. PubMed ID: 16725238 [TBL] [Abstract][Full Text] [Related]
6. Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R. Hwang WC; Lin Y; Santelli E; Sui J; Jaroszewski L; Stec B; Farzan M; Marasco WA; Liddington RC J Biol Chem; 2006 Nov; 281(45):34610-6. PubMed ID: 16954221 [TBL] [Abstract][Full Text] [Related]
7. The SARS-CoV S glycoprotein: expression and functional characterization. Xiao X; Chakraborti S; Dimitrov AS; Gramatikoff K; Dimitrov DS Biochem Biophys Res Commun; 2003 Dec; 312(4):1159-64. PubMed ID: 14651994 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. Xu Y; Lou Z; Liu Y; Pang H; Tien P; Gao GF; Rao Z J Biol Chem; 2004 Nov; 279(47):49414-9. PubMed ID: 15345712 [TBL] [Abstract][Full Text] [Related]
9. Relationship between SU subdomains that regulate the receptor-mediated transition from the native (fusion-inhibited) to the fusion-active conformation of the murine leukemia virus glycoprotein. Lavillette D; Ruggieri A; Boson B; Maurice M; Cosset FL J Virol; 2002 Oct; 76(19):9673-85. PubMed ID: 12208946 [TBL] [Abstract][Full Text] [Related]
10. The SARS-CoV S glycoprotein. Xiao X; Dimitrov DS Cell Mol Life Sci; 2004 Oct; 61(19-20):2428-30. PubMed ID: 15526150 [TBL] [Abstract][Full Text] [Related]
11. Ezrin interacts with the SARS coronavirus Spike protein and restrains infection at the entry stage. Millet JK; Kien F; Cheung CY; Siu YL; Chan WL; Li H; Leung HL; Jaume M; Bruzzone R; Peiris JS; Altmeyer RM; Nal B PLoS One; 2012; 7(11):e49566. PubMed ID: 23185364 [TBL] [Abstract][Full Text] [Related]
12. Aromatic amino acids in the juxtamembrane domain of severe acute respiratory syndrome coronavirus spike glycoprotein are important for receptor-dependent virus entry and cell-cell fusion. Howard MW; Travanty EA; Jeffers SA; Smith MK; Wennier ST; Thackray LB; Holmes KV J Virol; 2008 Mar; 82(6):2883-94. PubMed ID: 18199653 [TBL] [Abstract][Full Text] [Related]
13. Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. Babcock GJ; Esshaki DJ; Thomas WD; Ambrosino DM J Virol; 2004 May; 78(9):4552-60. PubMed ID: 15078936 [TBL] [Abstract][Full Text] [Related]
14. The N-terminal domain of the murine coronavirus spike glycoprotein determines the CEACAM1 receptor specificity of the virus strain. Tsai JC; Zelus BD; Holmes KV; Weiss SR J Virol; 2003 Jan; 77(2):841-50. PubMed ID: 12502800 [TBL] [Abstract][Full Text] [Related]
15. Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion. Petit CM; Melancon JM; Chouljenko VN; Colgrove R; Farzan M; Knipe DM; Kousoulas KG Virology; 2005 Oct; 341(2):215-30. PubMed ID: 16099010 [TBL] [Abstract][Full Text] [Related]
16. Identification of residues in the receptor-binding domain (RBD) of the spike protein of human coronavirus NL63 that are critical for the RBD-ACE2 receptor interaction. Lin HX; Feng Y; Wong G; Wang L; Li B; Zhao X; Li Y; Smaill F; Zhang C J Gen Virol; 2008 Apr; 89(Pt 4):1015-1024. PubMed ID: 18343844 [TBL] [Abstract][Full Text] [Related]
17. Solution structure of the severe acute respiratory syndrome-coronavirus heptad repeat 2 domain in the prefusion state. Hakansson-McReynolds S; Jiang S; Rong L; Caffrey M J Biol Chem; 2006 Apr; 281(17):11965-71. PubMed ID: 16507566 [TBL] [Abstract][Full Text] [Related]
18. A trimerizing GxxxG motif is uniquely inserted in the severe acute respiratory syndrome (SARS) coronavirus spike protein transmembrane domain. Arbely E; Granot Z; Kass I; Orly J; Arkin IT Biochemistry; 2006 Sep; 45(38):11349-56. PubMed ID: 16981695 [TBL] [Abstract][Full Text] [Related]
19. Immunogenicity of SARS-CoV: the receptor-binding domain of S protein is a major target of neutralizing antibodies. He Y Adv Exp Med Biol; 2006; 581():539-42. PubMed ID: 17037594 [No Abstract] [Full Text] [Related]
20. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein. Sainz B; Mossel EC; Gallaher WR; Wimley WC; Peters CJ; Wilson RB; Garry RF Virus Res; 2006 Sep; 120(1-2):146-55. PubMed ID: 16616792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]