BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

565 related articles for article (PubMed ID: 15313559)

  • 21. RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits.
    Watson N; Linder ME; Druey KM; Kehrl JH; Blumer KJ
    Nature; 1996 Sep; 383(6596):172-5. PubMed ID: 8774882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The RGS (regulator of G-protein signalling) and GoLoco domains of RGS14 co-operate to regulate Gi-mediated signalling.
    Traver S; Splingard A; Gaudriault G; De Gunzburg J
    Biochem J; 2004 May; 379(Pt 3):627-32. PubMed ID: 15112653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gbetagamma inhibits Galpha GTPase-activating proteins by inhibition of Galpha-GTP binding during stimulation by receptor.
    Tang W; Tu Y; Nayak SK; Woodson J; Jehl M; Ross EM
    J Biol Chem; 2006 Feb; 281(8):4746-53. PubMed ID: 16407201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits.
    Siderovski DP; Willard FS
    Int J Biol Sci; 2005; 1(2):51-66. PubMed ID: 15951850
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification and in vitro functional analysis of R7 subfamily RGS proteins in complex with Gbeta5.
    Hooks SB; Harden TK
    Methods Enzymol; 2004; 390():163-77. PubMed ID: 15488177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling.
    Evanko DS; Thiyagarajan MM; Takida S; Wedegaertner PB
    Cell Signal; 2005 Oct; 17(10):1218-28. PubMed ID: 16038796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective interactions between G protein subunits and RGS4 with the C-terminal domains of the mu- and delta-opioid receptors regulate opioid receptor signaling.
    Georgoussi Z; Leontiadis L; Mazarakou G; Merkouris M; Hyde K; Hamm H
    Cell Signal; 2006 Jun; 18(6):771-82. PubMed ID: 16120478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Palmitoylation and its effect on the GTPase-activating activity and conformation of RGS2.
    Ni J; Qu L; Yang H; Wang M; Huang Y
    Int J Biochem Cell Biol; 2006; 38(12):2209-18. PubMed ID: 16945566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential contribution of GTPase activation and effector antagonism to the inhibitory effect of RGS proteins on Gq-mediated signaling in vivo.
    Anger T; Zhang W; Mende U
    J Biol Chem; 2004 Feb; 279(6):3906-15. PubMed ID: 14630933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two RGS proteins that inhibit Galpha(o) and Galpha(q) signaling in C. elegans neurons require a Gbeta(5)-like subunit for function.
    Chase DL; Patikoglou GA; Koelle MR
    Curr Biol; 2001 Feb; 11(4):222-31. PubMed ID: 11250150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural basis of effector regulation and signal termination in heterotrimeric Galpha proteins.
    Sprang SR; Chen Z; Du X
    Adv Protein Chem; 2007; 74():1-65. PubMed ID: 17854654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of GRK2 RH domain-dependent regulation of GPCR coupling to heterotrimeric G proteins.
    Sterne-Marr R; Dhami GK; Tesmer JJ; Ferguson SS
    Methods Enzymol; 2004; 390():310-36. PubMed ID: 15488186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of subfamily B/R4 RGS protein function by 14-3-3 proteins.
    Abramow-Newerly M; Ming H; Chidiac P
    Cell Signal; 2006 Dec; 18(12):2209-22. PubMed ID: 16839744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials.
    Baltoumas FA; Theodoropoulou MC; Hamodrakas SJ
    J Struct Biol; 2013 Jun; 182(3):209-18. PubMed ID: 23523730
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bridging with GAPs: receptor communication through RGS proteins.
    Druey KM
    Sci STKE; 2001 Oct; 2001(104):re14. PubMed ID: 11604548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Introduction: G Protein-coupled Receptors and RGS Proteins.
    Stewart A; Fisher RA
    Prog Mol Biol Transl Sci; 2015; 133():1-11. PubMed ID: 26123299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RGS3 interacts with 14-3-3 via the N-terminal region distinct from the RGS (regulator of G-protein signalling) domain.
    Niu J; Scheschonka A; Druey KM; Davis A; Reed E; Kolenko V; Bodnar R; Voyno-Yasenetskaya T; Du X; Kehrl J; Dulin NO
    Biochem J; 2002 Aug; 365(Pt 3):677-84. PubMed ID: 11985497
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fusion proteins as model systems for the analysis of constitutive GPCR activity.
    Schneider EH; Seifert R
    Methods Enzymol; 2010; 485():459-80. PubMed ID: 21050932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lack of receptor-selective effects of either RGS2, RGS3 or RGS4 on muscarinic M3- and gonadotropin-releasing hormone receptor-mediated signalling through G alpha q/11.
    Karakoula A; Tovey SC; Brighton PJ; Willars GB
    Eur J Pharmacol; 2008 Jun; 587(1-3):16-24. PubMed ID: 18457830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assays of RGS protein modulation by phosphatidylinositides and calmodulin.
    Ishii M; Kurachi Y
    Methods Enzymol; 2004; 389():105-18. PubMed ID: 15313562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.