BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 15313564)

  • 1. Measuring the modulatory effects of RGS proteins on GIRK channels.
    Doupnik CA; Jaén C; Zhang Q
    Methods Enzymol; 2004; 389():131-54. PubMed ID: 15313564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal Kir3.1/Kir3.2a channels coupled to serotonin 1A and muscarinic m2 receptors are differentially modulated by the "short" RGS3 isoform.
    Jaén C; Doupnik CA
    Neuropharmacology; 2005 Sep; 49(4):465-76. PubMed ID: 15935408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gating properties of GIRK channels activated by Galpha(o)- and Galpha(i)-coupled muscarinic m2 receptors in Xenopus oocytes: the role of receptor precoupling in RGS modulation.
    Zhang Q; Pacheco MA; Doupnik CA
    J Physiol; 2002 Dec; 545(2):355-73. PubMed ID: 12456817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pertussis-toxin-sensitive Galpha subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex.
    Clancy SM; Fowler CE; Finley M; Suen KF; Arrabit C; Berton F; Kosaza T; Casey PJ; Slesinger PA
    Mol Cell Neurosci; 2005 Feb; 28(2):375-89. PubMed ID: 15691717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agonist unbinding from receptor dictates the nature of deactivation kinetics of G protein-gated K+ channels.
    Benians A; Leaney JL; Tinker A
    Proc Natl Acad Sci U S A; 2003 May; 100(10):6239-44. PubMed ID: 12719528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation and inhibition of neuronal G protein-gated inwardly rectifying K(+) channels by P2Y nucleotide receptors.
    Filippov AK; Fernández-Fernández JM; Marsh SJ; Simon J; Barnard EA; Brown DA
    Mol Pharmacol; 2004 Sep; 66(3):468-77. PubMed ID: 15322238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RGS3 and RGS4 differentially associate with G protein-coupled receptor-Kir3 channel signaling complexes revealing two modes of RGS modulation. Precoupling and collision coupling.
    Jaén C; Doupnik CA
    J Biol Chem; 2006 Nov; 281(45):34549-60. PubMed ID: 16973624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of RGS protein in agonist-dependent relaxation of GIRK currents in Xenopus oocytes.
    Sahlholm K
    Biochem Biophys Res Commun; 2011 Nov; 415(3):509-14. PubMed ID: 22068057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of RGS-insensitive Galpha subunits to study endogenous RGS protein action on G-protein modulation of N-type calcium channels in sympathetic neurons.
    Ikeda SR; Jeong SW
    Methods Enzymol; 2004; 389():170-89. PubMed ID: 15313566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RGS Redundancy and Implications in GPCR-GIRK Signaling.
    Doupnik CA
    Int Rev Neurobiol; 2015; 123():87-116. PubMed ID: 26422983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous regulator of G-protein signaling proteins regulate the kinetics of Galphaq/11-mediated modulation of ion channels in central nervous system neurons.
    Clark MA; Lambert NA
    Mol Pharmacol; 2006 Apr; 69(4):1280-7. PubMed ID: 16368893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endogenous RGS proteins and Galpha subtypes differentially control muscarinic and adenosine-mediated chronotropic effects.
    Fu Y; Huang X; Zhong H; Mortensen RM; D'Alecy LG; Neubig RR
    Circ Res; 2006 Mar; 98(5):659-66. PubMed ID: 16456099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of basal and receptor-induced GIRK potassium channel activity and neuronal excitability by the mammalian PINS homolog LGN.
    Wiser O; Qian X; Ehlers M; Ja WW; Roberts RW; Reuveny E; Jan YN; Jan LY
    Neuron; 2006 May; 50(4):561-73. PubMed ID: 16701207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assays of RGS protein modulation by phosphatidylinositides and calmodulin.
    Ishii M; Kurachi Y
    Methods Enzymol; 2004; 389():105-18. PubMed ID: 15313562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of action and structural requirements of constrained peptide inhibitors of RGS proteins.
    Roof RA; Jin Y; Roman DL; Sunahara RK; Ishii M; Mosberg HI; Neubig RR
    Chem Biol Drug Des; 2006 Apr; 67(4):266-74. PubMed ID: 16629824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orexin (hypocretin) effects on constitutively active inward rectifier K+ channels in cultured nucleus basalis neurons.
    Hoang QV; Zhao P; Nakajima S; Nakajima Y
    J Neurophysiol; 2004 Dec; 92(6):3183-91. PubMed ID: 15269229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative splicing of RGS8 gene determines inhibitory function of receptor type-specific Gq signaling.
    Saitoh O; Murata Y; Odagiri M; Itoh M; Itoh H; Misaka T; Kubo Y
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):10138-43. PubMed ID: 12110731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous RGS proteins regulate presynaptic and postsynaptic function: functional expression of RGS-insensitive Galpha subunits in central nervous system neurons.
    Chen H; Clark MA; Lambert NA
    Methods Enzymol; 2004; 389():190-204. PubMed ID: 15313567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of constitutive inward rectifier currents in cerebellar granule cells by pharmacological and synaptic activation of GABA receptors.
    Rossi P; Mapelli L; Roggeri L; Gall D; de Kerchove d'Exaerde A; Schiffmann SN; Taglietti V; D'Angelo E
    Eur J Neurosci; 2006 Jul; 24(2):419-32. PubMed ID: 16903850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism underlying bupivacaine inhibition of G protein-gated inwardly rectifying K+ channels.
    Zhou W; Arrabit C; Choe S; Slesinger PA
    Proc Natl Acad Sci U S A; 2001 May; 98(11):6482-7. PubMed ID: 11353868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.