BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 15314233)

  • 21. Thioredoxin A active-site mutants form mixed disulfide dimers that resemble enzyme-substrate reaction intermediates.
    Kouwen TR; Andréll J; Schrijver R; Dubois JY; Maher MJ; Iwata S; Carpenter EP; van Dijl JM
    J Mol Biol; 2008 Jun; 379(3):520-34. PubMed ID: 18455736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure-based combinatorial library design: discovery of non-peptidic inhibitors of caspases 3 and 8.
    Head MS; Ryan MD; Lee D; Feng Y; Janson CA; Concha NO; Keller PM; deWolf WE
    J Comput Aided Mol Des; 2001 Dec; 15(12):1105-17. PubMed ID: 12160093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Allosteric Inhibitors against Active Caspase-6.
    Tubeleviciute-Aydin A; Beautrait A; Lynham J; Sharma G; Gorelik A; Deny LJ; Soya N; Lukacs GL; Nagar B; Marinier A; LeBlanc AC
    Sci Rep; 2019 Apr; 9(1):5504. PubMed ID: 30940883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Allosteric peptides bind a caspase zymogen and mediate caspase tetramerization.
    Stanger K; Steffek M; Zhou L; Pozniak CD; Quan C; Franke Y; Tom J; Tam C; Krylova I; Elliott JM; Lewcock JW; Zhang Y; Murray J; Hannoush RN
    Nat Chem Biol; 2012 Jul; 8(7):655-60. PubMed ID: 22683611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Turning a protein kinase on or off from a single allosteric site via disulfide trapping.
    Sadowsky JD; Burlingame MA; Wolan DW; McClendon CL; Jacobson MP; Wells JA
    Proc Natl Acad Sci U S A; 2011 Apr; 108(15):6056-61. PubMed ID: 21430264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Substrate and inhibitor-induced dimerization and cooperativity in caspase-1 but not caspase-3.
    Datta D; McClendon CL; Jacobson MP; Wells JA
    J Biol Chem; 2013 Apr; 288(14):9971-9981. PubMed ID: 23386603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The atomic-resolution structure of human caspase-8, a key activator of apoptosis.
    Watt W; Koeplinger KA; Mildner AM; Heinrikson RL; Tomasselli AG; Watenpaugh KD
    Structure; 1999 Sep; 7(9):1135-43. PubMed ID: 10508785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advances in NMR Methods to Identify Allosteric Sites and Allosteric Ligands.
    Abdelkarim H; Hitchinson B; Banerjee A; Gaponenko V
    Adv Exp Med Biol; 2019; 1163():171-186. PubMed ID: 31707704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of the large subunit of class Ib ribonucleotide reductase from Salmonella typhimurium and its complexes with allosteric effectors.
    Uppsten M; Färnegårdh M; Jordan A; Eliasson R; Eklund H; Uhlin U
    J Mol Biol; 2003 Jun; 330(1):87-97. PubMed ID: 12818204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The potential for caspases in drug discovery.
    MacKenzie SH; Schipper JL; Clark AC
    Curr Opin Drug Discov Devel; 2010 Sep; 13(5):568-76. PubMed ID: 20812148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Allosteric regulation of proteases.
    Hauske P; Ottmann C; Meltzer M; Ehrmann M; Kaiser M
    Chembiochem; 2008 Dec; 9(18):2920-8. PubMed ID: 19021141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A class of allosteric caspase inhibitors identified by high-throughput screening.
    Feldman T; Kabaleeswaran V; Jang SB; Antczak C; Djaballah H; Wu H; Jiang X
    Mol Cell; 2012 Aug; 47(4):585-95. PubMed ID: 22795132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Allosteric modulation of caspase 3 through mutagenesis.
    Walters J; Schipper JL; Swartz P; Mattos C; Clark AC
    Biosci Rep; 2012 Aug; 32(4):401-11. PubMed ID: 22607239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Caspases from scleractinian coral show unique regulatory features.
    Shrestha S; Tung J; Grinshpon RD; Swartz P; Hamilton PT; Dimos B; Mydlarz L; Clark AC
    J Biol Chem; 2020 Oct; 295(43):14578-14591. PubMed ID: 32788218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allosteric Tuning of Caspase-7: Establishing the Nexus of Structure and Catalytic Power.
    Hobbs KF; Propp J; Vance NR; Kalenkiewicz A; Witkin KR; Ashley Spies M
    Chemistry; 2023 Jul; 29(40):e202300872. PubMed ID: 37005499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insights into the evolution of allosteric properties. The NADH binding site of hexameric type II citrate synthases.
    Maurus R; Nguyen NT; Stokell DJ; Ayed A; Hultin PG; Duckworth HW; Brayer GD
    Biochemistry; 2003 May; 42(19):5555-65. PubMed ID: 12741811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-based thermodynamic analysis of caspases reveals key residues for dimerization and activity.
    Piana S; Sulpizi M; Rothlisberger U
    Biochemistry; 2003 Jul; 42(29):8720-8. PubMed ID: 12873132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allosteric transitions in hemoglobin revisited.
    Shibayama N
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129335. PubMed ID: 30951803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC-DsbDalpha complex.
    Haebel PW; Goldstone D; Katzen F; Beckwith J; Metcalf P
    EMBO J; 2002 Sep; 21(18):4774-84. PubMed ID: 12234918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of the tertiary structure of a caspase-9/inhibitor complex.
    Chou KC; Tomasselli AG; Heinrikson RL
    FEBS Lett; 2000 Mar; 470(3):249-56. PubMed ID: 10745077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.