These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Bioreactor strategies for the treatment of growth-inhibitory waste: an analysis of thiodiglycol degradation, the main hydrolysis product of sulfur mustard. Lee T; Pham MQ; Weigand WA; Harvey SP; Bentley WE Biotechnol Prog; 1996; 12(4):533-9. PubMed ID: 8987480 [TBL] [Abstract][Full Text] [Related]
7. [Isolation and characterization of a chlorpyrifos degrading bacteria and its bioremediation application in the soil]. Yang L; Zhao YH; Zhang BX; Zhang X Wei Sheng Wu Xue Bao; 2005 Dec; 45(6):905-9. PubMed ID: 16496701 [TBL] [Abstract][Full Text] [Related]
8. Survival of naphthalene-degrading Pseudomonas putida NCIB 9816-4 in naphthalene-amended soils: toxicity of naphthalene and its metabolites. Park W; Jeon CO; Cadillo H; DeRito C; Madsen EL Appl Microbiol Biotechnol; 2004 Apr; 64(3):429-35. PubMed ID: 12928756 [TBL] [Abstract][Full Text] [Related]
9. [Destruction of mustard gas hydrolysis products by marine and soil bacteria]. Medvedeva NG; Poliak IuM; Zaĭtseva TB; Zharikov GA Izv Akad Nauk Ser Biol; 2012; (1):91-9. PubMed ID: 22567876 [TBL] [Abstract][Full Text] [Related]
10. Biodegradation of p-nitrophenol by P. putida. Kulkarni M; Chaudhari A Bioresour Technol; 2006 May; 97(8):982-8. PubMed ID: 16009549 [TBL] [Abstract][Full Text] [Related]
11. [The kinetics of glycol destruction by a Pseudomonas putida BS-2 strain]. Sedina SA Mikrobiol Zh (1978); 1992; 54(5):53-9. PubMed ID: 1453991 [TBL] [Abstract][Full Text] [Related]
12. Long-term analysis of diesel fuel consumption in a co-culture of Acinetobacter venetianus, Pseudomonas putida and Alcaligenes faecalis. Pepi M; Minacci A; Di Cello F; Baldi F; Fani R Antonie Van Leeuwenhoek; 2003; 83(1):3-9. PubMed ID: 12755474 [TBL] [Abstract][Full Text] [Related]
14. Determination of PASHs by various analytical techniques based on gas chromatography-mass spectrometry: application to a biodesulfurization process. Mezcua M; Fernández-Alba AR; Boltes K; Alonso Del Aguila R; Leton P; Rodríguez A; García-Calvo E Talanta; 2008 Jun; 75(5):1158-66. PubMed ID: 18585197 [TBL] [Abstract][Full Text] [Related]
15. Biodegradation of cyclic amines by a Pseudomonas strain involves an amine mono-oxygenase. Trigui M; Pulvin S; Poupin P; Thomas D Can J Microbiol; 2003 Mar; 49(3):181-8. PubMed ID: 12795404 [TBL] [Abstract][Full Text] [Related]
16. Potential of hexadecane-utilizing soil-microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy. Dashti N; Al-Awadhi H; Khanafer M; Abdelghany S; Radwan S Chemosphere; 2008 Jan; 70(3):475-9. PubMed ID: 17675208 [TBL] [Abstract][Full Text] [Related]
17. Microbial responses to mustard gas dumped in the Baltic Sea. Medvedeva N; Polyak Y; Kankaanpää H; Zaytseva T Mar Environ Res; 2009 Aug; 68(2):71-81. PubMed ID: 19481794 [TBL] [Abstract][Full Text] [Related]
19. [Phenanthrene degradation by bacteria of the genera Pseudomonas and Burkholderia in model soil systems]. Puntus IF; Filonov AE; Akhmetov LI; Karpov AV; Boronin AM Mikrobiologiia; 2008; 77(1):11-20. PubMed ID: 18365717 [TBL] [Abstract][Full Text] [Related]
20. Maintenance and induction of naphthalene degradation activity in Pseudomonas putida and an Alcaligenes sp. under different culture conditions. Guerin WF; Boyd SA Appl Environ Microbiol; 1995 Nov; 61(11):4061-8. PubMed ID: 8526520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]