BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 15315395)

  • 21. Granulomorphometry: a suitable tool for identifying hydrophobic and disulfide bonds in β-lactoglobulin aggregates. Application to the study of β-lactoglobulin aggregation mechanism between 70 and 95°C.
    Petit J; Herbig AL; Moreau A; Le Page JF; Six T; Delaplace G
    J Dairy Sci; 2012 Aug; 95(8):4188-202. PubMed ID: 22818432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro digestion of beta-lactoglobulin fibrils formed by heat treatment at low pH.
    Bateman L; Ye A; Singh H
    J Agric Food Chem; 2010 Sep; 58(17):9800-8. PubMed ID: 20684554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pressure-induced unfolding and aggregation of the proteins in whey protein concentrate solutions.
    Patel HA; Singh H; Havea P; Considine T; Creamer LK
    J Agric Food Chem; 2005 Nov; 53(24):9590-601. PubMed ID: 16302782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of exposed sulfhydryl groups in heated beta-lactoglobulin A using IAEDANS and mass spectrometry.
    Kehoe JJ; Brodkorb A; Mollé D; Yokoyama E; Famelart MH; Bouhallab S; Morris ER; Croguennec T
    J Agric Food Chem; 2007 Aug; 55(17):7107-13. PubMed ID: 17650000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of genetic variation on the tryptic hydrolysis of bovine beta-lactoglobulin A, B, and C.
    Creamer LK; Nilsson HC; Paulsson MA; Coker CJ; Hill JP; Jiménez-Flores R
    J Dairy Sci; 2004 Dec; 87(12):4023-32. PubMed ID: 15545362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The kinetics of heat-induced structural changes of beta-lactoglobulin.
    Sava N; Van der Plancken I; Claeys W; Hendrickx M
    J Dairy Sci; 2005 May; 88(5):1646-53. PubMed ID: 15829655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteomic quantification of disulfide-linked polymers in raw and heated bovine milk.
    Chevalier F; Kelly AL
    J Agric Food Chem; 2010 Jun; 58(12):7437-44. PubMed ID: 20504025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization and isolation of intermediates in beta-lactoglobulin heat aggregation at high pH.
    Bauer R; Carrotta R; Rischel C; Ogendal L
    Biophys J; 2000 Aug; 79(2):1030-8. PubMed ID: 10920033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peptides are building blocks of heat-induced fibrillar protein aggregates of beta-lactoglobulin formed at pH 2.
    Akkermans C; Venema P; van der Goot AJ; Gruppen H; Bakx EJ; Boom RM; van der Linden E
    Biomacromolecules; 2008 May; 9(5):1474-9. PubMed ID: 18416530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics and effects of specific peptides on heat-induced aggregation of β-lactoglobulin.
    Kosters HA; Wierenga PA; de Vries R; Gruppen H
    Biomacromolecules; 2011 Jun; 12(6):2159-70. PubMed ID: 21517078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The pH threshold in the dissolution of beta-lactoglobulin gels and aggregates in alkali.
    Mercadé-Prieto R; Paterson WR; Wilson DI
    Biomacromolecules; 2007 Apr; 8(4):1162-70. PubMed ID: 17378604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of the cluster size on the micro phase separation in mixtures of beta-lactoglobulin clusters and kappa-carrageenan.
    Baussay K; Nicolai T; Durand D
    Biomacromolecules; 2006 Jan; 7(1):304-9. PubMed ID: 16398529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization and in vitro digestibility of bovine beta-lactoglobulin glycated with galactooligosaccharides.
    Luz Sanz M; Corzo-Martínez M; Rastall RA; Olano A; Moreno FJ
    J Agric Food Chem; 2007 Sep; 55(19):7916-25. PubMed ID: 17708643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coaggregation of κ-Casein and β-Lactoglobulin Produces Morphologically Distinct Amyloid Fibrils.
    Raynes JK; Day L; Crepin P; Horrocks MH; Carver JA
    Small; 2017 Apr; 13(14):. PubMed ID: 28146312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and quantification of alphaS1, alphaS2, beta, and kappa-caseins in water buffalo milk by reverse phase-high performance liquid chromatography and mass spectrometry.
    Feligini M; Bonizzi I; Buffoni JN; Cosenza G; Ramunno L
    J Agric Food Chem; 2009 Apr; 57(7):2988-92. PubMed ID: 19256489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of beta-casein, kappa-casein and beta-lactoglobulin genotypes on concentration of milk protein variants.
    Hallén E; Wedholm A; Andrén A; Lundén A
    J Anim Breed Genet; 2008 Apr; 125(2):119-29. PubMed ID: 18363977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Re-formation of fibrils from hydrolysates of β-lactoglobulin fibrils during in vitro gastric digestion.
    Bateman L; Ye A; Singh H
    J Agric Food Chem; 2011 Sep; 59(17):9605-11. PubMed ID: 21790203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of disulphide linkages in bovine kappa-casein oligomers using two-dimensional electrophoresis.
    Holland JW; Deeth HC; Alewood PF
    Electrophoresis; 2008 Jun; 29(11):2402-10. PubMed ID: 18548457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection and characterization by high-performance liquid chromatography and mass spectrometry of a goat beta-casein associated with a CSN2 null allele.
    Cunsolo V; Galliano F; Muccilli V; Saletti R; Marletta D; Bordonaro S; Foti S
    Rapid Commun Mass Spectrom; 2005; 19(20):2943-9. PubMed ID: 16178051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disulfide bond formation is not crucial for the heat-induced interaction between β-lactoglobulin and milk fat globule membrane proteins.
    Hansen SF; Nielsen SD; Rasmusen JT; Larsen LB; Wiking L
    J Dairy Sci; 2020 Jul; 103(7):5874-5881. PubMed ID: 32389478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.