These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 15315399)

  • 21. Investigation of the influence of different moisture levels on acrylamide formation/elimination reactions using multiresponse analysis.
    De Vleeschouwer K; Van der Plancken I; Van Loey A; Hendrickx ME
    J Agric Food Chem; 2008 Aug; 56(15):6460-70. PubMed ID: 18597471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acrylamide is formed in the Maillard reaction.
    Mottram DS; Wedzicha BL; Dodson AT
    Nature; 2002 Oct; 419(6906):448-9. PubMed ID: 12368844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strecker-type degradation produced by the lipid oxidation products 4,5-epoxy-2-alkenals.
    Hidalgo FJ; Zamora R
    J Agric Food Chem; 2004 Nov; 52(23):7126-31. PubMed ID: 15537327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acrylamide formation from asparagine under low-moisture Maillard reaction conditions. 1. Physical and chemical aspects in crystalline model systems.
    Robert F; Vuataz G; Pollien P; Saucy F; Alonso MI; Bauwens I; Blank I
    J Agric Food Chem; 2004 Nov; 52(22):6837-42. PubMed ID: 15506824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simplified approach for the kinetic characterization of acrylamide formation in fructose-asparagine model system.
    Gökmen V; Senyuva HZ
    Food Addit Contam; 2006 Apr; 23(4):348-54. PubMed ID: 16546881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and monitoring of intermediates and products in the acrylamide pathway using online analysis.
    Channell GA; Wulfert F; Taylor AJ
    J Agric Food Chem; 2008 Aug; 56(15):6097-104. PubMed ID: 18624448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of high pressure-high temperature processing conditions on acrylamide formation and other Maillard reaction compounds.
    De Vleeschouwer K; Van der Plancken I; Van Loey A; Hendrickx ME
    J Agric Food Chem; 2010 Nov; 58(22):11740-8. PubMed ID: 20973553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of harvest year on amino acids and sugars in potatoes and effect on acrylamide formation during frying.
    Viklund GA; Olsson KM; Sjöholm IM; Skog KI
    J Agric Food Chem; 2008 Aug; 56(15):6180-4. PubMed ID: 18624433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermally generated 3-aminopropionamide as a transient intermediate in the formation of acrylamide.
    Granvogl M; Schieberle P
    J Agric Food Chem; 2006 Aug; 54(16):5933-8. PubMed ID: 16881697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Why asparagine needs carbohydrates to generate acrylamide.
    Yaylayan VA; Wnorowski A; Perez Locas C
    J Agric Food Chem; 2003 Mar; 51(6):1753-7. PubMed ID: 12617619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acrylamide formation in different foods and potential strategies for reduction.
    Stadler RH
    Adv Exp Med Biol; 2005; 561():157-69. PubMed ID: 16438297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of Amadori compounds by high-performance cation exchange chromatography coupled to tandem mass spectrometry.
    Davidek T; Kraehenbuehl K; Devaud S; Robert F; Blank I
    Anal Chem; 2005 Jan; 77(1):140-7. PubMed ID: 15623289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemistry, biochemistry, and safety of acrylamide. A review.
    Friedman M
    J Agric Food Chem; 2003 Jul; 51(16):4504-26. PubMed ID: 14705871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of reactive intermediates from Amadori compounds under physiological conditions.
    Zyzak DV; Richardson JM; Thorpe SR; Baynes JW
    Arch Biochem Biophys; 1995 Jan; 316(1):547-54. PubMed ID: 7840665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and experimental validation of a frying model to estimate acrylamide levels in French fries.
    Palazoğlu TK; Gökmen V
    J Food Sci; 2008 Apr; 73(3):E109-14. PubMed ID: 18387104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Asparagine decarboxylation by lipid oxidation products in model systems.
    Hidalgo FJ; Delgado RM; Navarro JL; Zamora R
    J Agric Food Chem; 2010 Oct; 58(19):10512-7. PubMed ID: 20828127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation of acrylamide generation in thermally processed model systems of asparagine and glucose with color formation, amounts of pyrazines formed, and antioxidative properties of extracts.
    Ehling S; Shibamoto T
    J Agric Food Chem; 2005 Jun; 53(12):4813-9. PubMed ID: 15941321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal decomposition of specifically phosphorylated D-glucoses and their role in the control of the Maillard reaction.
    Yaylayan VA; Machiels D; Istasse L
    J Agric Food Chem; 2003 May; 51(11):3358-66. PubMed ID: 12744667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amadori- and N-nitroso-Amadori compounds and their pyrolysis products. Chemical, analytical and biological aspects.
    Röper H; Röper S; Meyer B
    IARC Sci Publ; 1984; (57):101-11. PubMed ID: 6398292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of epicatechin reactions on the mechanisms of Maillard product formation in low moisture model systems.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2007 Jan; 55(2):414-20. PubMed ID: 17227073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.