These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 15315399)
41. Conversion of 3-aminopropionamide and 3-alkylaminopropionamides into acrylamide in model systems. Zamora R; Delgado RM; Hidalgo FJ Mol Nutr Food Res; 2009 Dec; 53(12):1512-20. PubMed ID: 19746374 [TBL] [Abstract][Full Text] [Related]
42. Role of curcumin in the conversion of asparagine into acrylamide during heating. Hamzalıoğlu A; Mogol BA; Lumaga RB; Fogliano V; Gökmen V Amino Acids; 2013 Jun; 44(6):1419-26. PubMed ID: 22143430 [TBL] [Abstract][Full Text] [Related]
43. Direct trapping of acrylamide as a key mechanism for niacin's inhibitory activity in carcinogenic acrylamide formation. Zeng X; Kong RP; Cheng KW; Du Y; Tang YS; Chu IK; Lo C; Sze KH; Chen F; Wang M Chem Res Toxicol; 2010 Apr; 23(4):802-7. PubMed ID: 20235591 [TBL] [Abstract][Full Text] [Related]
44. Determination of acrylamide formed in asparagine/D-glucose maillard model systems by using gas chromatography with headspace solid-phase microextraction. El-Ghorab AH; Fujioka K; Shibamoto T J AOAC Int; 2006; 89(1):149-53. PubMed ID: 16512240 [TBL] [Abstract][Full Text] [Related]
45. Study of degradation pathways of Amadori compounds obtained by glycation of opioid pentapeptide and related smaller fragments: stability, reactions, and spectroscopic properties. Jakas A; Horvat S Biopolymers; 2003 Aug; 69(4):421-31. PubMed ID: 12879488 [TBL] [Abstract][Full Text] [Related]
46. News on the Maillard reaction of oligomeric carbohydrates: a survey. Kroh LW; Schulz A Nahrung; 2001 Jun; 45(3):160-3. PubMed ID: 11455781 [TBL] [Abstract][Full Text] [Related]
47. Formation of furan and methylfuran by maillard-type reactions in model systems and food. Limacher A; Kerler J; Davidek T; Schmalzried F; Blank I J Agric Food Chem; 2008 May; 56(10):3639-47. PubMed ID: 18439018 [TBL] [Abstract][Full Text] [Related]
49. Acrylamide in French fries: influence of free amino acids and sugars. Becalski A; Lau BP; Lewis D; Seaman SW; Hayward S; Sahagian M; Ramesh M; Leclerc Y J Agric Food Chem; 2004 Jun; 52(12):3801-6. PubMed ID: 15186100 [TBL] [Abstract][Full Text] [Related]
50. Effect of amino acids on acrylamide formation and elimination kinetics. Claeys WL; De Vleeschouwer K; Hendrickx ME Biotechnol Prog; 2005; 21(5):1525-30. PubMed ID: 16209557 [TBL] [Abstract][Full Text] [Related]
51. Strecker aldehydes and α-keto acids, produced by carbonyl-amine reactions, contribute to the formation of acrylamide. Zamora R; Delgado RM; Hidalgo FJ Food Chem; 2011 Sep; 128(2):465-70. PubMed ID: 25212157 [TBL] [Abstract][Full Text] [Related]
52. Kinetics of acrylamide formation/elimination reactions as affected by water activity. De Vleeschouwer K; Van der Plancken I; Van Loey A; Hendrickx ME Biotechnol Prog; 2007; 23(3):722-8. PubMed ID: 17503764 [TBL] [Abstract][Full Text] [Related]
53. Effect of L-asparaginase on acrylamide mitigation in a fried-dough pastry model. Kukurová K; Morales FJ; Bednáriková A; Ciesarová Z Mol Nutr Food Res; 2009 Dec; 53(12):1532-9. PubMed ID: 19824015 [TBL] [Abstract][Full Text] [Related]
54. Acrylamide formation from asparagine under low moisture Maillard reaction conditions. 2. Crystalline vs amorphous model systems. Robert F; Vuataz G; Pollien P; Saucy F; Alonso MI; Bauwens I; Blank I J Agric Food Chem; 2005 Jun; 53(11):4628-32. PubMed ID: 15913336 [TBL] [Abstract][Full Text] [Related]
55. Formation of acrylamide from glucans and asparagine. Tsutsumiuchi K; Watanabe Y; Watanabe M; Hibino M; Kambe M; Okajima N; Negishi H; Miwa J; Taniguchi H N Biotechnol; 2011 Oct; 28(6):566-73. PubMed ID: 21252006 [TBL] [Abstract][Full Text] [Related]
56. Simultaneous analysis of acrylamide and its key precursors, intermediates, and products in model systems by liquid chromatography-triple quadrupole mass spectrometry. Liu J; Man Y; Zhu Y; Hu X; Chen F Anal Chem; 2013 Oct; 85(19):9262-71. PubMed ID: 24053692 [TBL] [Abstract][Full Text] [Related]
57. Measurement of acrylamide and its precursors in potato, wheat, and rye model systems. Elmore JS; Koutsidis G; Dodson AT; Mottram DS; Wedzicha BL J Agric Food Chem; 2005 Feb; 53(4):1286-93. PubMed ID: 15713054 [TBL] [Abstract][Full Text] [Related]
58. Influence of agronomic factors and extraction rate on the acrylamide contents in yeast-leavened breads. Claus A; Schreiter P; Weber A; Graeff S; Herrmann W; Claupein W; Schieber A; Carle R J Agric Food Chem; 2006 Nov; 54(23):8968-76. PubMed ID: 17090149 [TBL] [Abstract][Full Text] [Related]
59. The effect of cooking on acrylamide and its precursors in potato, wheat and rye. Elmore JS; Koutsidis G; Dodson AT; Mottram DS; Wedzicha BL Adv Exp Med Biol; 2005; 561():255-69. PubMed ID: 16438303 [TBL] [Abstract][Full Text] [Related]
60. Effects of genotype and environment on free amino acid levels in wheat grain: implications for acrylamide formation during processing. Curtis TY; Muttucumaru N; Shewry PR; Parry MA; Powers SJ; Elmore JS; Mottram DS; Hook S; Halford NG J Agric Food Chem; 2009 Feb; 57(3):1013-21. PubMed ID: 19143525 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]