These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 15315399)
61. Determination of acrylamide during roasting of coffee. Bagdonaite K; Derler K; Murkovic M J Agric Food Chem; 2008 Aug; 56(15):6081-6. PubMed ID: 18624446 [TBL] [Abstract][Full Text] [Related]
62. Origin and yields of acetic acid in pentose-based Maillard reaction systems. Davidek T; Gouézec E; Devaud S; Blank I Ann N Y Acad Sci; 2008 Apr; 1126():241-3. PubMed ID: 18448822 [TBL] [Abstract][Full Text] [Related]
63. Kinetics of formation of acrylamide and Schiff base intermediates from asparagine and glucose. Hedegaard RV; Frandsen H; Skibsted LH Food Chem; 2008 Jun; 108(3):917-25. PubMed ID: 26065753 [TBL] [Abstract][Full Text] [Related]
64. Reactivity of 1-deoxy-D-erythro-hexo-2,3-diulose: a key intermediate in the maillard chemistry of hexoses. Voigt M; Glomb MA J Agric Food Chem; 2009 Jun; 57(11):4765-70. PubMed ID: 19422225 [TBL] [Abstract][Full Text] [Related]
65. Inhibitory mechanism of naringenin against carcinogenic acrylamide formation and nonenzymatic browning in Maillard model reactions. Cheng KW; Zeng X; Tang YS; Wu JJ; Liu Z; Sze KH; Chu IK; Chen F; Wang M Chem Res Toxicol; 2009 Aug; 22(8):1483-9. PubMed ID: 19639978 [TBL] [Abstract][Full Text] [Related]
66. Review of methods for the reduction of dietary content and toxicity of acrylamide. Friedman M; Levin CE J Agric Food Chem; 2008 Aug; 56(15):6113-40. PubMed ID: 18624452 [TBL] [Abstract][Full Text] [Related]
67. Structural studies of the Maillard reaction products of a protein using ion trap mass spectrometry. Tagami U; Akashi S; Mizukoshi T; Suzuki E; Hirayama K J Mass Spectrom; 2000 Feb; 35(2):131-8. PubMed ID: 10679972 [TBL] [Abstract][Full Text] [Related]
68. Sugar fragmentation in the maillard reaction cascade: formation of short-chain carboxylic acids by a new oxidative alpha-dicarbonyl cleavage pathway. Davídek T; Robert F; Devaud S; Vera FA; Blank I J Agric Food Chem; 2006 Sep; 54(18):6677-84. PubMed ID: 16939326 [TBL] [Abstract][Full Text] [Related]
70. Reduction of acrylamide and its kinetics by addition of antioxidant of bamboo leaves (AOB) and extract of green tea (EGT) in asparagine-glucose microwave heating system. Zhang Y; Ying T; Zhang Y J Food Sci; 2008 Mar; 73(2):C60-6. PubMed ID: 18298717 [TBL] [Abstract][Full Text] [Related]
71. Model studies on acrylamide generation from glucose/asparagine in aqueous glycerol. Hedegaard RV; Frandsen H; Granby K; Apostolopoulou A; Skibsted LH J Agric Food Chem; 2007 Jan; 55(2):486-92. PubMed ID: 17227083 [TBL] [Abstract][Full Text] [Related]
72. Kinetic models as a route to control acrylamide formation in food. Wedzicha BL; Mottram DS; Elmore JS; Koutsidis G; Dodson AT Adv Exp Med Biol; 2005; 561():235-53. PubMed ID: 16438302 [TBL] [Abstract][Full Text] [Related]
73. The functional properties of chitosan-glucose-asparagine Maillard reaction products and mitigation of acrylamide formation by chitosans. Sung WC; Chang YW; Chou YH; Hsiao HI Food Chem; 2018 Mar; 243():141-144. PubMed ID: 29146320 [TBL] [Abstract][Full Text] [Related]
75. Investigations of factors that influence the acrylamide content of heated foodstuffs. Rydberg P; Eriksson S; Tareke E; Karlsson P; Ehrenberg L; Törnqvist M J Agric Food Chem; 2003 Nov; 51(24):7012-8. PubMed ID: 14611163 [TBL] [Abstract][Full Text] [Related]
76. Glycosylation of lysine-containing pentapeptides by glucuronic acid: new insights into the Maillard reaction. Horvat S; Roscić M Carbohydr Res; 2010 Feb; 345(3):377-84. PubMed ID: 20034621 [TBL] [Abstract][Full Text] [Related]
77. Analysis of acrylamide in green tea by gas chromatography-mass spectrometry. Mizukami Y; Kohata K; Yamaguchi Y; Hayashi N; Sawai Y; Chuda Y; Ono H; Yada H; Yoshida M J Agric Food Chem; 2006 Sep; 54(19):7370-7. PubMed ID: 16968107 [TBL] [Abstract][Full Text] [Related]
78. Free asparagine and sugars profile of cereal species: the potential of cereals for acrylamide formation in foods. Žilić S; Dodig D; Basić Z; Vančetović J; Titan P; Đurić N; Tolimir N Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 May; 34(5):705-713. PubMed ID: 28150529 [TBL] [Abstract][Full Text] [Related]
79. Quantitation of furan and methylfuran formed in different precursor systems by proton transfer reaction mass spectrometry. Märk J; Pollien P; Lindinger C; Blank I; Märk T J Agric Food Chem; 2006 Apr; 54(7):2786-93. PubMed ID: 16569077 [TBL] [Abstract][Full Text] [Related]
80. Effect of different molecular weight chitosans on the mitigation of acrylamide formation and the functional properties of the resultant Maillard reaction products. Chang YW; Sung WC; Chen JY Food Chem; 2016 May; 199():581-9. PubMed ID: 26776011 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]