These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15315438)

  • 1. Quantum chemical calculations of the NHA bound nitric oxide synthase active site: O2 binding and implications for the catalytic mechanism.
    Cho KB; Gauld JW
    J Am Chem Soc; 2004 Aug; 126(33):10267-70. PubMed ID: 15315438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A density functional theory investigation on the mechanism of the second half-reaction of nitric oxide synthase.
    Robinet JJ; Cho KB; Gauld JW
    J Am Chem Soc; 2008 Mar; 130(11):3328-34. PubMed ID: 18293966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Second half-reaction of nitric oxide synthase: computational insights into the initial step and key proposed intermediate.
    Cho KB; Gauld JW
    J Phys Chem B; 2005 Dec; 109(49):23706-14. PubMed ID: 16375351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrosyl-heme structures of Bacillus subtilis nitric oxide synthase have implications for understanding substrate oxidation.
    Pant K; Crane BR
    Biochemistry; 2006 Feb; 45(8):2537-44. PubMed ID: 16489746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional theory (DFT) and combined quantum mechanical/molecular mechanics (QM/MM) studies on the oxygen activation step in nitric oxide synthase enzymes.
    de Visser SP
    Biochem Soc Trans; 2009 Apr; 37(Pt 2):373-7. PubMed ID: 19290865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of the N(omega)-hydroxy-L-arginine complex of inducible nitric oxide synthase oxygenase dimer with active and inactive pterins.
    Crane BR; Arvai AS; Ghosh S; Getzoff ED; Stuehr DJ; Tainer JA
    Biochemistry; 2000 Apr; 39(16):4608-21. PubMed ID: 10769116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compound I of nitric oxide synthase: the active site protonation state.
    Cho KB; Derat E; Shaik S
    J Am Chem Soc; 2007 Mar; 129(11):3182-8. PubMed ID: 17319660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-protein interactions in nitric oxide synthase.
    Rousseau DL; Li D; Couture M; Yeh SR
    J Inorg Biochem; 2005 Jan; 99(1):306-23. PubMed ID: 15598509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand, cofactor, and residue vibrations in the catalytic site of endothelial nitric oxide synthase.
    Ingledew WJ; Smith SM; Gao YT; Jones RJ; Salerno JC; Rich PR
    Biochemistry; 2005 Mar; 44(11):4238-46. PubMed ID: 15766252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate- and isoform-specific dioxygen complexes of nitric oxide synthase.
    Li D; Kabir M; Stuehr DJ; Rousseau DL; Yeh SR
    J Am Chem Soc; 2007 May; 129(21):6943-51. PubMed ID: 17488012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First half-reaction mechanism of nitric oxide synthase: the role of proton and oxygen coupled electron transfer in the reaction by quantum mechanics/molecular mechanics.
    Cho KB; Carvajal MA; Shaik S
    J Phys Chem B; 2009 Jan; 113(1):336-46. PubMed ID: 19072325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and synthesis of C5 methylated L-arginine analogues as active site probes for nitric oxide synthase.
    Martin NI; Woodward JJ; Winter MB; Beeson WT; Marletta MA
    J Am Chem Soc; 2007 Oct; 129(41):12563-70. PubMed ID: 17892291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4,4-Difluorinated analogues of l-arginine and N(G)-hydroxy-l-arginine as mechanistic probes for nitric oxide synthase.
    Martin NI; Woodward JJ; Winter MB; Marletta MA
    Bioorg Med Chem Lett; 2009 Mar; 19(6):1758-62. PubMed ID: 19230661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of tetrahydrobiopterin tunes its electron transfer to the heme-dioxy intermediate in nitric oxide synthase.
    Wei CC; Wang ZQ; Arvai AS; Hemann C; Hille R; Getzoff ED; Stuehr DJ
    Biochemistry; 2003 Feb; 42(7):1969-77. PubMed ID: 12590583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of substrate-induced electronic, catalytic, and structural changes in inducible NO synthase.
    Sennequier N; Stuehr DJ
    Biochemistry; 1996 May; 35(18):5883-92. PubMed ID: 8639550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase.
    Berka V; Yeh HC; Gao D; Kiran F; Tsai AL
    Biochemistry; 2004 Oct; 43(41):13137-48. PubMed ID: 15476407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant.
    Woodward JJ; Chang MM; Martin NI; Marletta MA
    J Am Chem Soc; 2009 Jan; 131(1):297-305. PubMed ID: 19128180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative computational analysis of active and inactive cofactors of nitric oxide synthase.
    Menyhárd DK
    J Phys Chem B; 2009 Mar; 113(10):3151-9. PubMed ID: 19708267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ENDOR spectroscopic evidence for the position and structure of NG-hydroxy-L-arginine bound to holo-neuronal nitric oxide synthase.
    Tierney DL; Huang H; Martasek P; Masters BS; Silverman RB; Hoffman BM
    Biochemistry; 1999 Mar; 38(12):3704-10. PubMed ID: 10090758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.