BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 15315694)

  • 1. Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach.
    Coulon A; Cosson JF; Angibault JM; Cargnelutti B; Galan M; Morellet N; Petit E; Aulagnier S; Hewison AJ
    Mol Ecol; 2004 Sep; 13(9):2841-50. PubMed ID: 15315694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streams over mountains: influence of riparian connectivity on gene flow in the Pacific jumping mouse (Zapus trinotatus).
    Vignieri SN
    Mol Ecol; 2005 Jun; 14(7):1925-37. PubMed ID: 15910316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus).
    Pérez-Espona S; Pérez-Barbería FJ; McLeod JE; Jiggins CD; Gordon IJ; Pemberton JM
    Mol Ecol; 2008 Feb; 17(4):981-96. PubMed ID: 18261043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic structure is influenced by landscape features: empirical evidence from a roe deer population.
    Coulon A; Guillot G; Cosson JF; Angibault JM; Aulagnier S; Cargnelutti B; Galan M; Hewison AJ
    Mol Ecol; 2006 May; 15(6):1669-79. PubMed ID: 16629819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic effect of transportation infrastructure on roe deer populations (Capreolus capreolus).
    Kuehn R; Hindenlang KE; Holzgang O; Senn J; Stoeckle B; Sperisen C
    J Hered; 2007; 98(1):13-22. PubMed ID: 17170074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling.
    Cushman SA; McKelvey KS; Hayden J; Schwartz MK
    Am Nat; 2006 Oct; 168(4):486-99. PubMed ID: 17004220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Landscape barriers reduce gene flow in an invasive carnivore: geographical and local genetic structure of American mink in Scotland.
    Zalewski A; Piertney SB; Zalewska H; Lambin X
    Mol Ecol; 2009 Apr; 18(8):1601-15. PubMed ID: 19302354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Landscape genetics of an endangered lemur (Propithecus tattersalli) within its entire fragmented range.
    Quéméré E; Crouau-Roy B; Rabarivola C; Louis EE; Chikhi L
    Mol Ecol; 2010 Apr; 19(8):1606-21. PubMed ID: 20345682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene flow and functional connectivity in the natterjack toad.
    Stevens VM; Verkenne C; Vandewoestijne S; Wesselingh RA; Baguette M
    Mol Ecol; 2006 Aug; 15(9):2333-44. PubMed ID: 16842409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity.
    Keyghobadi N; Roland J; Strobeck C
    Mol Ecol; 2005 Jun; 14(7):1897-909. PubMed ID: 15910314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population structure of spotted salamanders (Ambystoma maculatum) in a fragmented landscape.
    Purrenhage JL; Niewiarowski PH; Moore FB
    Mol Ecol; 2009 Jan; 18(2):235-47. PubMed ID: 19192178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum).
    Spear SF; Peterson CR; Matocq MD; Storfer A
    Mol Ecol; 2005 Jul; 14(8):2553-64. PubMed ID: 15969734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Landscape-level gene flow in Lobaria pulmonaria, an epiphytic lichen.
    Werth S; Gugerli F; Holderegger R; Wagner HH; Csencsics D; Scheidegger C
    Mol Ecol; 2007 Jul; 16(13):2807-15. PubMed ID: 17594449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of habitat fragmentation via forestry plantation establishment on spatial genotypic structure in the small marsupial carnivore, Antechinus agilis.
    Banks SC; Lindenmayer DB; Ward SJ; Taylor AC
    Mol Ecol; 2005 May; 14(6):1667-80. PubMed ID: 15836641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach.
    Braunisch V; Segelbacher G; Hirzel AH
    Mol Ecol; 2010 Sep; 19(17):3664-78. PubMed ID: 20723058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variable extent of sex-biased dispersal in a strongly polygynous mammal.
    Pérez-Espona S; Pérez-Barbería FJ; Jiggins CD; Gordon IJ; Pemberton JM
    Mol Ecol; 2010 Aug; 19(15):3101-13. PubMed ID: 20629954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The walk is never random: subtle landscape effects shape gene flow in a continuous white-tailed deer population in the Midwestern United States.
    Robinson SJ; Samuel MD; Lopez DL; Shelton P
    Mol Ecol; 2012 Sep; 21(17):4190-205. PubMed ID: 22882236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Landscape genetic structure of coastal tailed frogs (Ascaphus truei) in protected vs. managed forests.
    Spear SF; Storfer A
    Mol Ecol; 2008 Nov; 17(21):4642-56. PubMed ID: 19140987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial genetic structure in a metapopulation of the land snail Cepaea nemoralis (Gastropoda: Helicidae).
    Schweiger O; Frenzel M; Durka W
    Mol Ecol; 2004 Dec; 13(12):3645-55. PubMed ID: 15548280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extensive pollen dispersal in a bird-pollinated shrub, Calothamnus quadrifidus, in a fragmented landscape.
    Byrne M; Elliott CP; Yates C; Coates DJ
    Mol Ecol; 2007 Mar; 16(6):1303-14. PubMed ID: 17391415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.