BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15315716)

  • 1. Gene expression profile analysis of the rat cortex following treatment with imipramine and citalopram.
    Palotás M; Palotás A; Puskás LG; Kitajka K; Pákáski M; Janka Z; Molnár J; Penke B; Kálmán J
    Int J Neuropsychopharmacol; 2004 Dec; 7(4):401-13. PubMed ID: 15315716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imipramine and citalopram facilitate amyloid precursor protein secretion in vitro.
    Pákáski M; Bjelik A; Hugyecz M; Kása P; Janka Z; Kálmán J
    Neurochem Int; 2005 Aug; 47(3):190-5. PubMed ID: 15955598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct effects of imipramine on 5-hydroxytryptamine uptake mediated by the recombinant rat serotonin transporter SERT1.
    Sur C; Betz H; Schloss P
    J Neurochem; 1998 Jun; 70(6):2545-53. PubMed ID: 9603221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The differential effects of chronic imipramine or citalopram administration on physiological and behavioral outcomes in naïve mice.
    Strekalova T; Anthony DC; Dolgov O; Anokhin K; Kubatiev A; Steinbusch HM; Schroeter C
    Behav Brain Res; 2013 May; 245():101-6. PubMed ID: 23434605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic administration of imipramine and citalopram alters the expression of NMDA receptor subunit mRNAs in mouse brain. A quantitative in situ hybridization study.
    Boyer PA; Skolnick P; Fossom LH
    J Mol Neurosci; 1998 Jun; 10(3):219-33. PubMed ID: 9770644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of selective serotonin reuptake inhibitors with the serotonin 5-HT2c receptor.
    Pälvimäki EP; Roth BL; Majasuo H; Laakso A; Kuoppamäki M; Syvälahti E; Hietala J
    Psychopharmacology (Berl); 1996 Aug; 126(3):234-40. PubMed ID: 8876023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in serum and brain trace element levels after antidepressant treatment: part I. Zinc.
    Nowak G; Schlegel-Zawadzka M
    Biol Trace Elem Res; 1999 Jan; 67(1):85-92. PubMed ID: 10065601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo effects of the simultaneous blockade of serotonin and norepinephrine transporters on serotonergic function. Microdialysis studies.
    Bel N; Artigas F
    J Pharmacol Exp Ther; 1996 Sep; 278(3):1064-72. PubMed ID: 8819487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of lipid-raft localized Gα
    Singh H; Wray N; Schappi JM; Rasenick MM
    Neuropsychopharmacology; 2018 Jun; 43(7):1481-1491. PubMed ID: 29463911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeated administration of antidepressants decreases field potentials in rat frontal cortex.
    Bobula B; Tokarski K; Hess G
    Neuroscience; 2003; 120(3):765-9. PubMed ID: 12895516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Up-regulation of beta 1-adrenergic receptors in rat brain after chronic citalopram and fluoxetine treatments.
    Pälvimäki EP; Laakso A; Kuoppamäki M; Syvälahti E; Hietala J
    Psychopharmacology (Berl); 1994 Aug; 115(4):543-6. PubMed ID: 7871100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antidepressant-like effects in various mice strains in the tail suspension test.
    Ripoll N; David DJ; Dailly E; Hascoët M; Bourin M
    Behav Brain Res; 2003 Aug; 143(2):193-200. PubMed ID: 12900045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of combined administration of 5-HT1A or 5-HT1B/1D receptor antagonists and antidepressants in the forced swimming test.
    Tatarczyńska E; Kłodzińska A; Stachowicz K; Chojnacka-Wójcik E
    Eur J Pharmacol; 2004 Mar; 487(1-3):133-42. PubMed ID: 15033385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain.
    Narita N; Hashimoto K; Tomitaka S; Minabe Y
    Eur J Pharmacol; 1996 Jun; 307(1):117-9. PubMed ID: 8831113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mirtazapine enhances frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission by blockade of alpha2-adrenergic and serotonin2C receptors: a comparison with citalopram.
    Millan MJ; Gobert A; Rivet JM; Adhumeau-Auclair A; Cussac D; Newman-Tancredi A; Dekeyne A; Nicolas JP; Lejeune F
    Eur J Neurosci; 2000 Mar; 12(3):1079-95. PubMed ID: 10762339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of hypothalamic transcripts upregulated by antidepressants.
    Wong ML; Khatri P; Licinio J; Esposito A; Gold PW
    Biochem Biophys Res Commun; 1996 Dec; 229(1):275-9. PubMed ID: 8954118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hippocampal Bcl-2 expression is selectively increased following chronic but not acute treatment with antidepressants, 5-HT(1A) or 5-HT(2C/2B) receptor antagonists.
    Murray F; Hutson PH
    Eur J Pharmacol; 2007 Aug; 569(1-2):41-7. PubMed ID: 17582397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo and in vitro effect of imipramine and fluoxetine on Na+,K+-ATPase activity in synaptic plasma membranes from the cerebral cortex of rats.
    Zanatta LM; Nascimento FC; Barros SV; Silva GR; Zugno AI; Netto CA; Wyse AT
    Braz J Med Biol Res; 2001 Oct; 34(10):1265-9. PubMed ID: 11593300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluoxetine and citalopram decrease microglial release of glutamate and D-serine to promote cortical neuronal viability following ischemic insult.
    Dhami KS; Churchward MA; Baker GB; Todd KG
    Mol Cell Neurosci; 2013 Sep; 56():365-74. PubMed ID: 23876875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of antidepressant drug exposure on gene expression in the developing cerebral cortex.
    Tsapakis EM; Fernandes C; Moran-Gates T; Basu A; Sugden K; Aitchison KJ; Tarazi FI
    Synapse; 2014 May; 68(5):209-20. PubMed ID: 24458505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.