These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15315788)

  • 21. Laminin-1-induced migration of multiple myeloma cells involves the high-affinity 67 kD laminin receptor.
    Vande Broek I; Vanderkerken K; De Greef C; Asosingh K; Straetmans N; Van Camp B; Van Riet I
    Br J Cancer; 2001 Nov; 85(9):1387-95. PubMed ID: 11720479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mesenchymal stromal cells revert multiple myeloma cells to less differentiated phenotype by the combined activities of adhesive interactions and interleukin-6.
    Dezorella N; Pevsner-Fischer M; Deutsch V; Kay S; Baron S; Stern R; Tavor S; Nagler A; Naparstek E; Zipori D; Katz BZ
    Exp Cell Res; 2009 Jul; 315(11):1904-13. PubMed ID: 19328780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drug insight: thalidomide as a treatment for multiple myeloma.
    Kumar S; Anderson KC
    Nat Clin Pract Oncol; 2005 May; 2(5):262-70. PubMed ID: 16264962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib.
    Podar K; Shringarpure R; Tai YT; Simoncini M; Sattler M; Ishitsuka K; Richardson PG; Hideshima T; Chauhan D; Anderson KC
    Cancer Res; 2004 Oct; 64(20):7500-6. PubMed ID: 15492276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MIP-1alpha utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells.
    Oba Y; Lee JW; Ehrlich LA; Chung HY; Jelinek DF; Callander NS; Horuk R; Choi SJ; Roodman GD
    Exp Hematol; 2005 Mar; 33(3):272-8. PubMed ID: 15730850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The involvement of osteopontin and its receptors in multiple myeloma cell survival, migration and invasion in the murine 5T33MM model.
    Caers J; Günthert U; De Raeve H; Van Valckenborgh E; Menu E; Van Riet I; Van Camp B; Vanderkerken K
    Br J Haematol; 2006 Feb; 132(4):469-77. PubMed ID: 16412019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting multiple myeloma cells and their bone marrow microenvironment.
    Pagnucco G; Cardinale G; Gervasi F
    Ann N Y Acad Sci; 2004 Dec; 1028():390-9. PubMed ID: 15650264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma.
    Gunn WG; Conley A; Deininger L; Olson SD; Prockop DJ; Gregory CA
    Stem Cells; 2006 Apr; 24(4):986-91. PubMed ID: 16293576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myeloma cell-osteoclast interaction enhances angiogenesis together with bone resorption: a role for vascular endothelial cell growth factor and osteopontin.
    Tanaka Y; Abe M; Hiasa M; Oda A; Amou H; Nakano A; Takeuchi K; Kitazoe K; Kido S; Inoue D; Moriyama K; Hashimoto T; Ozaki S; Matsumoto T
    Clin Cancer Res; 2007 Feb; 13(3):816-23. PubMed ID: 17289872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo.
    Hideshima T; Neri P; Tassone P; Yasui H; Ishitsuka K; Raje N; Chauhan D; Podar K; Mitsiades C; Dang L; Munshi N; Richardson P; Schenkein D; Anderson KC
    Clin Cancer Res; 2006 Oct; 12(19):5887-94. PubMed ID: 17020997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and validation of novel therapeutic targets for multiple myeloma.
    Hideshima T; Chauhan D; Richardson P; Anderson KC
    J Clin Oncol; 2005 Sep; 23(26):6345-50. PubMed ID: 16155018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unraveling the biology of multiple myeloma disease: cancer stem cells, acquired intracellular changes and interactions with the surrounding micro-environment.
    Caers J; Van Valckenborgh E; Menu E; Van Camp B; Vanderkerken K
    Bull Cancer; 2008 Mar; 95(3):301-13. PubMed ID: 18390410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epigenetic silencing of the tetraspanin CD9 during disease progression in multiple myeloma cells and correlation with survival.
    De Bruyne E; Bos TJ; Asosingh K; Vande Broek I; Menu E; Van Valckenborgh E; Atadja P; Coiteux V; Leleu X; Thielemans K; Van Camp B; Vanderkerken K; Van Riet I
    Clin Cancer Res; 2008 May; 14(10):2918-26. PubMed ID: 18483358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of apoptosis in human multiple myeloma by insulin-like growth factor I (IGF-I).
    Jernberg-Wiklund H; Nilsson K
    Adv Cancer Res; 2007; 97():139-65. PubMed ID: 17419944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma.
    Ribatti D; Nico B; Vacca A
    Oncogene; 2006 Jul; 25(31):4257-66. PubMed ID: 16518413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Angiogenesis in multiple myeloma.
    Jakob C; Sterz J; Zavrski I; Heider U; Kleeberg L; Fleissner C; Kaiser M; Sezer O
    Eur J Cancer; 2006 Jul; 42(11):1581-90. PubMed ID: 16797965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of brain-derived neurotrophic factor as a novel angiogenic protein in multiple myeloma.
    Hu Y; Wang YD; Guo T; Wei WN; Sun CY; Zhang L; Huang J
    Cancer Genet Cytogenet; 2007 Oct; 178(1):1-10. PubMed ID: 17889702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The insulin-like growth factor-I receptor inhibitor NVP-AEW541 provokes cell cycle arrest and apoptosis in multiple myeloma cells.
    Maiso P; Ocio EM; Garayoa M; Montero JC; Hofmann F; García-Echeverría C; Zimmermann J; Pandiella A; San Miguel JF
    Br J Haematol; 2008 May; 141(4):470-82. PubMed ID: 18341634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment.
    Hayashi T; Hideshima T; Nguyen AN; Munoz O; Podar K; Hamasaki M; Ishitsuka K; Yasui H; Richardson P; Chakravarty S; Murphy A; Chauhan D; Higgins LS; Anderson KC
    Clin Cancer Res; 2004 Nov; 10(22):7540-6. PubMed ID: 15569984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mouse plasmacytoma: an experimental model of human multiple myeloma.
    Gadó K; Silva S; Pálóczi K; Domján G; Falus A
    Haematologica; 2001 Mar; 86(3):227-36. PubMed ID: 11255268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.