BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 1531616)

  • 1. Neocarzinostatin-mediated DNA damage in a model AGT.ACT site: mechanistic studies of thiol-sensitive partitioning of C4' DNA damage products.
    Dedon PC; Jiang ZW; Goldberg IH
    Biochemistry; 1992 Feb; 31(7):1917-27. PubMed ID: 1531616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exclusive production of bistranded DNA damage by calicheamicin.
    Dedon PC; Salzberg AA; Xu J
    Biochemistry; 1993 Apr; 32(14):3617-22. PubMed ID: 8466904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-specific double-strand breakage of DNA by neocarzinostatin involves different chemical mechanisms within a staggered cleavage site.
    Dedon PC; Goldberg IH
    J Biol Chem; 1990 Sep; 265(25):14713-6. PubMed ID: 2144279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct and hydrogen peroxide-induced chromium(V) oxidation of deoxyribose in single-stranded and double-stranded calf thymus DNA.
    Sugden KD; Wetterhahn KE
    Chem Res Toxicol; 1997 Dec; 10(12):1397-406. PubMed ID: 9437531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neocarzinostatin acts as a sensitive probe of DNA microheterogeneity: switching of chemistry from C-1' to C-4' by a G.T mismatch 5' to the site of DNA damage.
    Kappen LS; Goldberg IH
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6706-10. PubMed ID: 1386670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective abstraction of 2H from C-1' of the C residue in AGC.ICT by the radical center at C-2 of activated neocarzinostatin chromophore: structure of the drug/DNA complex responsible for bistranded lesion formation.
    Meschwitz SM; Schultz RG; Ashley GW; Goldberg IH
    Biochemistry; 1992 Sep; 31(38):9117-21. PubMed ID: 1390698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mismatch-induced switch of neocarzinostatin attack sites in the DNA minor groove.
    Kappen LS; Goldberg IH
    Biochemistry; 1992 Sep; 31(37):9081-9. PubMed ID: 1390695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular models of neocarzinostatin damage of DNA: analysis of sequence dependence in 5'GAGCG:5'CGCTC.
    Galat A; Goldberg IH
    Nucleic Acids Res; 1990 Apr; 18(8):2093-9. PubMed ID: 2139934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA strand scission by neocarzinostatin: molecular recognition process responsible for site-specificity.
    Sugiyama H; Fujiwara T; Kawabata H; Saito I; Hirayama N; Yoda N
    Nucleic Acids Symp Ser; 1990; (22):55-6. PubMed ID: 2151670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neocarzinostatin-induced hydrogen atom abstraction from C-4' and C-5' of the T residue at a d(GT) step in oligonucleotides: shuttling between deoxyribose attack sites based on isotope selection effects.
    Kappen LS; Goldberg IH; Frank BL; Worth L; Christner DF; Kozarich JW; Stubbe J
    Biochemistry; 1991 Feb; 30(8):2034-42. PubMed ID: 1825606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-stranded damage of DNA.RNA hybrids by neocarzinostatin chromophore: selective C-1' chemistry on the RNA strand.
    Zeng X; Xi Z; Kappen LS; Tan W; Goldberg IH
    Biochemistry; 1995 Sep; 34(38):12435-44. PubMed ID: 7547989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of thiol structure on neocarzinostatin activation and expression of DNA damage.
    Dedon PC; Goldberg IH
    Biochemistry; 1992 Feb; 31(7):1909-17. PubMed ID: 1531615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiols alter the partitioning of calicheamicin-induced deoxyribose 4'-oxidation reactions in the absence of DNA radical repair.
    Lopez-Larraza DM; Moore K; Dedon PC
    Chem Res Toxicol; 2001 May; 14(5):528-35. PubMed ID: 11368551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C1027 chromophore, a potent new enediyne antitumor antibiotic, induces sequence-specific double-strand DNA cleavage.
    Xu YJ; Zhen YS; Goldberg IH
    Biochemistry; 1994 May; 33(19):5947-54. PubMed ID: 8180224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3'-Formyl phosphate-ended DNA: high-energy intermediate in antibiotic-induced DNA sugar damage.
    Chin DH; Kappen LS; Goldberg IH
    Proc Natl Acad Sci U S A; 1987 Oct; 84(20):7070-4. PubMed ID: 2959956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted base substitutions and small deletions induced by neocarzinostatin at the APRT locus in plateau-phase CHO cells.
    Wang P; Povirk LF
    Mutat Res; 1997 Jan; 373(1):17-29. PubMed ID: 9015149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemistry of drug-induced DNA lesions.
    Saito I
    Toxicol Lett; 1993 Apr; 67(1-3):3-15. PubMed ID: 8451767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of oligonucleotides containing a 4'-keto abasic site.
    Chen J; Stubbe J
    Biochemistry; 2004 May; 43(18):5278-86. PubMed ID: 15122893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the C4'-oxidized abasic site as the most abundant 2-deoxyribose lesion in radiation-damaged DNA using a novel HPLC-based approach.
    Roginskaya M; Mohseni R; Moore TJ; Bernhard WA; Razskazovskiy Y
    Radiat Res; 2014 Feb; 181(2):131-7. PubMed ID: 24410455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atypical abasic sites generated by neocarzinostatin at sequence-specific cytidylate residues in oligodeoxynucleotides.
    Kappen LS; Chen CQ; Goldberg IH
    Biochemistry; 1988 Jun; 27(12):4331-40. PubMed ID: 2458753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.