These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 15316546)
21. Cerebral capillary flow imaging by wavelength-division-multiplexing swept-source optical Doppler tomography. Chen W; Du C; Pan Y J Biophotonics; 2018 Aug; 11(8):e201800004. PubMed ID: 29603668 [TBL] [Abstract][Full Text] [Related]
22. In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Yazdanfar S; Rollins AM; Izatt JA Arch Ophthalmol; 2003 Feb; 121(2):235-9. PubMed ID: 12583790 [TBL] [Abstract][Full Text] [Related]
23. [2-dimensional mapping and retinal and papillary microcirculation using scanning laser Doppler flowmetry]. Michelson G; Groh M; Langhans M; Schmauss B Klin Monbl Augenheilkd; 1995 Sep; 207(3):180-90. PubMed ID: 7474787 [TBL] [Abstract][Full Text] [Related]
24. Full-range Fourier domain Doppler optical coherence tomography based on sinusoidal phase modulation. Nan N; Wang X; Bu P; Li Z; Guo X; Chen Y; Wang X; Yuan F; Sasaki O Appl Opt; 2014 Apr; 53(12):2669-76. PubMed ID: 24787594 [TBL] [Abstract][Full Text] [Related]
25. A digital frequency ramping method for enhancing Doppler flow imaging in Fourier-domain optical coherence tomography. Yuan Z; Luo ZC; Ren HG; Du CW; Pan Y Opt Express; 2009 Mar; 17(5):3951-63. PubMed ID: 19259236 [TBL] [Abstract][Full Text] [Related]
26. Monitoring of drug and stimulation induced cerebral blood flow velocity changes in rat sensory cortex using spectral domain Doppler optical coherence tomography. Wang C; Yang Y; Ding Z; Meng J; Wang K; Yang W; Xu Y J Biomed Opt; 2011 Apr; 16(4):046001. PubMed ID: 21529070 [TBL] [Abstract][Full Text] [Related]
27. Clutter rejection filters for optical Doppler tomography. Ren H; Li X Opt Express; 2006 Jun; 14(13):6103-12. PubMed ID: 19516783 [TBL] [Abstract][Full Text] [Related]
28. Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy. Li H; Standish BA; Mariampillai A; Munce NR; Mao Y; Chiu S; Marcon NE; Wilson BC; Vitkin A; Yang VX Lasers Surg Med; 2006 Sep; 38(8):754-61. PubMed ID: 16927368 [TBL] [Abstract][Full Text] [Related]
29. Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography. Larina IV; Sudheendran N; Ghosn M; Jiang J; Cable A; Larin KV; Dickinson ME J Biomed Opt; 2008; 13(6):060506. PubMed ID: 19123647 [TBL] [Abstract][Full Text] [Related]
30. Measurement of the absolute velocity of blood flow in early-stage chick embryos using spectral domain optical coherence tomography. Ma ZH; Ma YS; Zhao YQ; Liu J; Liu JH; Lv JT; Wang Y Appl Opt; 2017 Nov; 56(31):8832-8837. PubMed ID: 29091702 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light. Varghese B; Rajan V; Van Leeuwen TG; Steenbergen W Rev Sci Instrum; 2007 Dec; 78(12):126103. PubMed ID: 18163752 [TBL] [Abstract][Full Text] [Related]
32. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part IV): split spectrum processing in rotary catheter probes. Vuong B; Lee AM; Luk TW; Sun C; Lam S; Lane P; Yang VX Opt Express; 2014 Apr; 22(7):7399-415. PubMed ID: 24718115 [TBL] [Abstract][Full Text] [Related]
33. Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography. Werkmeister RM; Dragostinoff N; Palkovits S; Told R; Boltz A; Leitgeb RA; Gröschl M; Garhöfer G; Schmetterer L Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6062-71. PubMed ID: 22893675 [TBL] [Abstract][Full Text] [Related]
34. Variability and repeatability of quantitative, Fourier-domain optical coherence tomography Doppler blood flow in young and elderly healthy subjects. Tayyari F; Yusof F; Vymyslicky M; Tan O; Huang D; Flanagan JG; Hudson C Invest Ophthalmol Vis Sci; 2014 Oct; 55(12):7716-25. PubMed ID: 25335983 [TBL] [Abstract][Full Text] [Related]
35. Paired-angle-rotation scanning optical coherence tomography forward-imaging probe. Wu J; Conry M; Gu C; Wang F; Yaqoob Z; Yang C Opt Lett; 2006 May; 31(9):1265-7. PubMed ID: 16642080 [TBL] [Abstract][Full Text] [Related]
36. Measurements of Retinal Perfusion Using Laser Speckle Flowgraphy and Doppler Optical Coherence Tomography. Luft N; Wozniak PA; Aschinger GC; Fondi K; Bata AM; Werkmeister RM; Schmidl D; Witkowska KJ; Bolz M; Garhöfer G; Schmetterer L Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5417-5425. PubMed ID: 27756076 [TBL] [Abstract][Full Text] [Related]
37. Measurement of retinal blood flow in the rat by combining Doppler Fourier-domain optical coherence tomography with fundus imaging. Werkmeister RM; Vietauer M; Knopf C; Fürnsinn C; Leitgeb RA; Reitsamer H; Gröschl M; Garhöfer G; Vilser W; Schmetterer L J Biomed Opt; 2014; 19(10):106008. PubMed ID: 25321400 [TBL] [Abstract][Full Text] [Related]
38. Optical coherence tomography of malignancy in hamster cheek pouches. Matheny ES; Hanna NM; Jung WG; Chen Z; Wilder-Smith P; Mina-Araghi R; Brenner M J Biomed Opt; 2004; 9(5):978-81. PubMed ID: 15447019 [TBL] [Abstract][Full Text] [Related]
39. Relationship between laser speckle flowgraphy and optical coherence tomography angiography measurements of ocular microcirculation. Kiyota N; Kunikata H; Shiga Y; Omodaka K; Nakazawa T Graefes Arch Clin Exp Ophthalmol; 2017 Aug; 255(8):1633-1642. PubMed ID: 28462456 [TBL] [Abstract][Full Text] [Related]