BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 15316652)

  • 1. Acetyl-coenzyme A synthetase (AMP forming).
    Starai VJ; Escalante-Semerena JC
    Cell Mol Life Sci; 2004 Aug; 61(16):2020-30. PubMed ID: 15316652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine.
    Starai VJ; Celic I; Cole RN; Boeke JD; Escalante-Semerena JC
    Science; 2002 Dec; 298(5602):2390-2. PubMed ID: 12493915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and thermodynamic analyses of Salmonella enterica Pat, a multidomain, multimeric N(ε)-lysine acetyltransferase involved in carbon and energy metabolism.
    Thao S; Escalante-Semerena JC
    mBio; 2011; 2(5):. PubMed ID: 22010215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica.
    Starai VJ; Escalante-Semerena JC
    J Mol Biol; 2004 Jul; 340(5):1005-12. PubMed ID: 15236963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residue Leu-641 of Acetyl-CoA synthetase is critical for the acetylation of residue Lys-609 by the Protein acetyltransferase enzyme of Salmonella enterica.
    Starai VJ; Gardner JG; Escalante-Semerena JC
    J Biol Chem; 2005 Jul; 280(28):26200-5. PubMed ID: 15899897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP.
    Jogl G; Tong L
    Biochemistry; 2004 Feb; 43(6):1425-31. PubMed ID: 14769018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Salmonella enterica, the sirtuin-dependent protein acylation/deacylation system (SDPADS) maintains energy homeostasis during growth on low concentrations of acetate.
    Chan CH; Garrity J; Crosby HA; Escalante-Semerena JC
    Mol Microbiol; 2011 Apr; 80(1):168-83. PubMed ID: 21306440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 1.75 A crystal structure of acetyl-CoA synthetase bound to adenosine-5'-propylphosphate and coenzyme A.
    Gulick AM; Starai VJ; Horswill AR; Homick KM; Escalante-Semerena JC
    Biochemistry; 2003 Mar; 42(10):2866-73. PubMed ID: 12627952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the acyl substrate binding pocket of acetyl-CoA synthetase.
    Ingram-Smith C; Woods BI; Smith KS
    Biochemistry; 2006 Sep; 45(38):11482-90. PubMed ID: 16981708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMP-forming acetyl-CoA synthetase from the extremely halophilic archaeon Haloarcula marismortui: purification, identification and expression of the encoding gene, and phylogenetic affiliation.
    Bräsen C; Schönheit P
    Extremophiles; 2005 Oct; 9(5):355-65. PubMed ID: 15947865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A link between transcription and intermediary metabolism: a role for Sir2 in the control of acetyl-coenzyme A synthetase.
    Starai VJ; Takahashi H; Boeke JD; Escalante-Semerena JC
    Curr Opin Microbiol; 2004 Apr; 7(2):115-9. PubMed ID: 15063846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic AMP Inhibits the Activity and Promotes the Acetylation of Acetyl-CoA Synthetase through Competitive Binding to the ATP/AMP Pocket.
    Han X; Shen L; Wang Q; Cen X; Wang J; Wu M; Li P; Zhao W; Zhang Y; Zhao G
    J Biol Chem; 2017 Jan; 292(4):1374-1384. PubMed ID: 27974467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular evolution of the AMP-forming Acetyl-CoA synthetase.
    Karan D; David JR; Capy P
    Gene; 2001 Mar; 265(1-2):95-101. PubMed ID: 11255012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of acetate formation and acetate activation in halophilic archaea.
    Bräsen C; Schönheit P
    Arch Microbiol; 2001 May; 175(5):360-8. PubMed ID: 11409546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylation of acetyl-CoA synthetase from Mycobacterium tuberculosis leads to specific inactivation of the adenylation reaction.
    Noy T; Xu H; Blanchard JS
    Arch Biochem Biophys; 2014 May; 550-551():42-9. PubMed ID: 24751484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible acetylation and inactivation of Mycobacterium tuberculosis acetyl-CoA synthetase is dependent on cAMP.
    Xu H; Hegde SS; Blanchard JS
    Biochemistry; 2011 Jul; 50(26):5883-92. PubMed ID: 21627103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leucine-684: A conserved residue of an AMP-acetyl CoA synthetase (AceCS) from Leishmania donovani is involved in substrate recognition, catalysis and acetylation.
    Soumya N; Tandan H; Damre MV; Gangwal RP; Sangamwar AT; Singh S
    Gene; 2016 Apr; 580(2):125-133. PubMed ID: 26794803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMP-acetyl CoA synthetase from Leishmania donovani: identification and functional analysis of 'PX4GK' motif.
    Soumya N; Kumar IS; Shivaprasad S; Gorakh LN; Dinesh N; Swamy KK; Singh S
    Int J Biol Macromol; 2015 Apr; 75():364-72. PubMed ID: 25660655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AMP-forming acetyl-CoA synthetases in Archaea show unexpected diversity in substrate utilization.
    Ingram-Smith C; Smith KS
    Archaea; 2007 May; 2(2):95-107. PubMed ID: 17350930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Staphylococcus aureus modulates the activity of acetyl-Coenzyme A synthetase (Acs) by sirtuin-dependent reversible lysine acetylation.
    Burckhardt RM; Buckner BA; Escalante-Semerena JC
    Mol Microbiol; 2019 Aug; 112(2):588-604. PubMed ID: 31099918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.