BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15316779)

  • 1. Reduction of the thylakoid electron transport chain by stromal reductants--evidence for activation of cyclic electron transport upon dark adaptation or under drought.
    Golding AJ; Finazzi G; Johnson GN
    Planta; 2004 Dec; 220(2):356-63. PubMed ID: 15316779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units.
    Bukhov N; Egorova E; Carpentier R
    Planta; 2002 Sep; 215(5):812-20. PubMed ID: 12244447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoluminescence and P700 redox kinetics as complementary tools to investigate the cyclic/chlororespiratory electron pathways in stress conditions in barley leaves.
    Peeva VN; Tóth SZ; Cornic G; Ducruet JM
    Physiol Plant; 2012 Jan; 144(1):83-97. PubMed ID: 21910736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascorbate in thylakoid lumen functions as an alternative electron donor to photosystem II and photosystem I.
    Mano J; Hideg E; Asada K
    Arch Biochem Biophys; 2004 Sep; 429(1):71-80. PubMed ID: 15288811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enhancement of cyclic electron flow around photosystem I improves the recovery of severely desiccated Porphyra yezoensis (Bangiales, Rhodophyta).
    Gao S; Wang G
    J Exp Bot; 2012 Jul; 63(12):4349-58. PubMed ID: 22438301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic electron flow under saturating excitation of dark-adapted Arabidopsis leaves.
    Joliot P; Béal D; Joliot A
    Biochim Biophys Acta; 2004 Jun; 1656(2-3):166-76. PubMed ID: 15178478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Down-regulation of linear and activation of cyclic electron transport during drought.
    Golding AJ; Johnson GN
    Planta; 2003 Nov; 218(1):107-14. PubMed ID: 12883889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of cytochrome b6f at low and high light intensity and cyclic electron transport in leaves.
    Laisk A; Eichelmann H; Oja V; Peterson RB
    Biochim Biophys Acta; 2005 Jun; 1708(1):79-90. PubMed ID: 15949986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in the responses of photosystem I and photosystem II of three tree species Cleistanthus sumatranus, Celtis philippensis and Pistacia weinmannifolia exposed to a prolonged drought in a tropical limestone forest.
    Huang W; Fu PL; Jiang YJ; Zhang JL; Zhang SB; Hu H; Cao KF
    Tree Physiol; 2013 Feb; 33(2):211-20. PubMed ID: 23329334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating changes in the redox state of Photosystem I at low pH.
    Tongra T; Jajoo A
    J Photochem Photobiol B; 2015 Oct; 151():25-30. PubMed ID: 26151897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing both the fast and the slow phases of chlorophyll a fluorescence and P700 absorbance changes in dark-adapted and preilluminated pea leaves using a Thylakoid Membrane model.
    Belyaeva NE; Bulychev AA; Riznichenko GY; Rubin AB
    Photosynth Res; 2019 Apr; 140(1):1-19. PubMed ID: 30810971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold stress effects on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications.
    Savitch LV; Ivanov AG; Gudynaite-Savitch L; Huner NP; Simmonds J
    Plant Cell Physiol; 2011 Jun; 52(6):1042-54. PubMed ID: 21546369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of photosynthetic electron transport in bundle sheath cells of maize. I. Ascorbate effectively stimulates cyclic electron flow around PSI.
    Ivanov B; Asada K; Kramer DM; Edwards G
    Planta; 2005 Feb; 220(4):572-81. PubMed ID: 15449056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dark adaptation on light-induced electron transport through photosystem I in the cyanobacterium Synechocystis sp. PCC 6803.
    Timofeev KN; Kuznetsova GV; Elanskaya IV
    Biochemistry (Mosc); 2005 Dec; 70(12):1390-5. PubMed ID: 16417463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High root temperature blocks both linear and cyclic electron transport in the dark during chilling of the leaves of rice seedlings.
    Suzuki K; Ohmori Y; Ratel E
    Plant Cell Physiol; 2011 Sep; 52(9):1697-707. PubMed ID: 21803813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stromal over-reduction by high-light stress as measured by decreases in P700 oxidation by far-red light and its physiological relevance.
    Endo T; Kawase D; Sato F
    Plant Cell Physiol; 2005 May; 46(5):775-81. PubMed ID: 15788424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for active cyclic electron flow in twig chlorenchyma in the presence of an extremely deficient linear electron transport activity.
    Kotakis Ch; Petropoulou Y; Stamatakis K; Yiotis Ch; Manetas Y
    Planta; 2006 Dec; 225(1):245-53. PubMed ID: 16773373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How does iron deficiency disrupt the electron flow in photosystem I of lettuce leaves?
    Msilini N; Essemine J; Zaghdoudi M; Harnois J; Lachaâl M; Ouerghi Z; Carpentier R
    J Plant Physiol; 2013 Nov; 170(16):1400-6. PubMed ID: 23747063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stoichiometry of the two photosystems in higher plants revisited.
    Fan DY; Hope AB; Smith PJ; Jia H; Pace RJ; Anderson JM; Chow WS
    Biochim Biophys Acta; 2007 Aug; 1767(8):1064-72. PubMed ID: 17618597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of photochemical quenching of absorbed quanta in photosystem I of intact leaves using simultaneous measurements of absorbance changes at 830 nm and thermal dissipation.
    Bukhov NG; Carpentier R
    Planta; 2003 Feb; 216(4):630-8. PubMed ID: 12569405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.