These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 15316877)
1. Oxidation of buried cysteines is slow and an insignificant factor in the structural destabilization of staphylococcal nuclease caused by H2O2 exposure. Kim YH; Stites WE Amino Acids; 2004 Oct; 27(2):175-81. PubMed ID: 15316877 [TBL] [Abstract][Full Text] [Related]
2. Comparing the effect on protein stability of methionine oxidation versus mutagenesis: steps toward engineering oxidative resistance in proteins. Kim YH; Berry AH; Spencer DS; Stites WE Protein Eng; 2001 May; 14(5):343-7. PubMed ID: 11438757 [TBL] [Abstract][Full Text] [Related]
3. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability. Chen J; Lu Z; Sakon J; Stites WE J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780 [TBL] [Abstract][Full Text] [Related]
4. Stability effects of increasing the hydrophobicity of solvent-exposed side chains in staphylococcal nuclease. Schwehm JM; Kristyanne ES; Biggers CC; Stites WE Biochemistry; 1998 May; 37(19):6939-48. PubMed ID: 9578580 [TBL] [Abstract][Full Text] [Related]
5. Protection of GroEL by its methionine residues against oxidation by hydrogen peroxide. Melkani GC; Kestetter J; Sielaff R; Zardeneta G; Mendoza JA Biochem Biophys Res Commun; 2006 Aug; 347(2):534-9. PubMed ID: 16828704 [TBL] [Abstract][Full Text] [Related]
6. The effects of amino acid replacements of glycine 20 on conformational stability and catalysis of staphylococcal nuclease. Feng Y; Huang S; Zhang W; Zeng Z; Zou X; Zhong L; Peng J; Jing G Biochimie; 2004 Dec; 86(12):893-901. PubMed ID: 15667939 [TBL] [Abstract][Full Text] [Related]
7. The use of t-butyl hydroperoxide as a probe for methionine oxidation in proteins. Keck RG Anal Biochem; 1996 Apr; 236(1):56-62. PubMed ID: 8619496 [TBL] [Abstract][Full Text] [Related]
8. Oxidation of methionine residues in the prion protein by hydrogen peroxide. Requena JR; Dimitrova MN; Legname G; Teijeira S; Prusiner SB; Levine RL Arch Biochem Biophys; 2004 Dec; 432(2):188-95. PubMed ID: 15542057 [TBL] [Abstract][Full Text] [Related]
9. Replacement of staphylococcal nuclease hydrophobic core residues with those from thermophilic homologues indicates packing is improved in some thermostable proteins. Chen J; Stites WE J Mol Biol; 2004 Nov; 344(1):271-80. PubMed ID: 15504416 [TBL] [Abstract][Full Text] [Related]
10. X-ray and thermodynamic studies of staphylococcal nuclease variants I92E and I92K: insights into polarity of the protein interior. Nguyen DM; Leila Reynald R; Gittis AG; Lattman EE J Mol Biol; 2004 Aug; 341(2):565-74. PubMed ID: 15276844 [TBL] [Abstract][Full Text] [Related]
11. Effects of chaotropic and kosmotropic cosolvents on the pressure-induced unfolding and denaturation of proteins: an FT-IR study on staphylococcal nuclease. Herberhold H; Royer CA; Winter R Biochemistry; 2004 Mar; 43(12):3336-45. PubMed ID: 15035605 [TBL] [Abstract][Full Text] [Related]
12. Oxidation of methionine residues in recombinant human interleukin-1 receptor antagonist: implications of conformational stability on protein oxidation kinetics. Thirumangalathu R; Krishnan S; Bondarenko P; Speed-Ricci M; Randolph TW; Carpenter JF; Brems DN Biochemistry; 2007 May; 46(21):6213-24. PubMed ID: 17480058 [TBL] [Abstract][Full Text] [Related]
13. Local stability identification and the role of key acidic amino acid residues in staphylococcal nuclease unfolding. Chen HM; Chan SC; Leung KW; Wu JM; Fang HJ; Tsong TY FEBS J; 2005 Aug; 272(15):3967-74. PubMed ID: 16045767 [TBL] [Abstract][Full Text] [Related]
14. Generating oxidation-resistant variants of Bacillus kaustophilus leucine aminopeptidase by substitution of the critical methionine residues with leucine. Chi MC; Chou WM; Wang CH; Chen W; Hsu WH; Lin LL Antonie Van Leeuwenhoek; 2004 Nov; 86(4):355-62. PubMed ID: 15702388 [TBL] [Abstract][Full Text] [Related]
15. Isolation and physical characterization of random insertions in Staphylococcal nuclease. Nguyen DM; Schleif RF J Mol Biol; 1998 Oct; 282(4):751-9. PubMed ID: 9743624 [TBL] [Abstract][Full Text] [Related]
16. Effect of N-terminal deletions on the foldability, stability, and activity of staphylococcal nuclease. Zhang H; Huang S; Feng Y; Guo P; Jing G Arch Biochem Biophys; 2005 Sep; 441(2):123-31. PubMed ID: 16111646 [TBL] [Abstract][Full Text] [Related]
17. Secondary reactions and strategies to improve quantitative protein footprinting. Xu G; Kiselar J; He Q; Chance MR Anal Chem; 2005 May; 77(10):3029-37. PubMed ID: 15889890 [TBL] [Abstract][Full Text] [Related]
18. The oxidation of yeast alcohol dehydrogenase-1 by hydrogen peroxide in vitro. Men L; Wang Y J Proteome Res; 2007 Jan; 6(1):216-25. PubMed ID: 17203966 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics simulations and oxidation rates of methionine residues of granulocyte colony-stimulating factor at different pH values. Chu JW; Yin J; Wang DI; Trout BL Biochemistry; 2004 Feb; 43(4):1019-29. PubMed ID: 14744147 [TBL] [Abstract][Full Text] [Related]
20. Elucidation of information encoded in tryptophan 140 of staphylococcal nuclease. Hirano S; Kamikubo H; Yamazaki Y; Kataoka M Proteins; 2005 Feb; 58(2):271-7. PubMed ID: 15573380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]