BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 15316994)

  • 1. Stabilizing or destabilizing oligodeoxynucleotide duplexes containing single 2'-deoxyuridine residues with 5-alkynyl substituents.
    Kottysch T; Ahlborn C; Brotzel F; Richert C
    Chemistry; 2004 Aug; 10(16):4017-28. PubMed ID: 15316994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the origin of the stabilization of DNA by 5-aminopropynylation of pyrimidines.
    Booth J; Brown T; Vadhia SJ; Lack O; Cummins WJ; Trent JO; Lane AN
    Biochemistry; 2005 Mar; 44(12):4710-9. PubMed ID: 15779897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 2'-acylamido cap that increases the stability of oligonucleotide duplexes.
    Kryatova OP; Connors WH; Bleczinski CF; Mokhir AA; Richert C
    Org Lett; 2001 Apr; 3(7):987-90. PubMed ID: 11277776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High fidelity base pairing at the 3'-terminus.
    Patra A; Richert C
    J Am Chem Soc; 2009 Sep; 131(35):12671-81. PubMed ID: 19722718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azide-alkyne "click" conjugation of 8-aza-7-deazaadenine-DNA: synthesis, duplex stability, and fluorogenic dye labeling.
    Seela F; Pujari SS
    Bioconjug Chem; 2010 Sep; 21(9):1629-41. PubMed ID: 20681566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and properties of 2'-O-neopentyl modified oligonucleotides.
    Mathis G; Bourg S; Aci-Sèche S; Truffert JC; Asseline U
    Org Biomol Chem; 2013 Feb; 11(8):1345-57. PubMed ID: 23318410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the terminal amino group of a linker arm and its length at the C5 position of a pyrimidine nucleoside on the thermal stability of DNA duplexes.
    Ozaki H; Mine M; Ogawa Y; Sawai H
    Bioorg Chem; 2001 Aug; 29(4):187-97. PubMed ID: 16256691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligonucleotides containing 6-aza-2'-deoxyuridine: synthesis, nucleobase protection, pH-dependent duplex stability, and metal-DNA formation.
    Seela F; Chittepu P
    J Org Chem; 2007 Jun; 72(12):4358-66. PubMed ID: 17503846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleosides and nucleotides. 170. Synthesis and properties of oligodeoxynucleotides containing 5-[N-[2-[N,N-bis(2-aminoethyl)- amino]ethyl]carbamoyl]-2'-deoxyuridine and 5-[N-[3-[N,N-bis(3-aminopropyl) amino]propyl]carbamoyl]-2'-deoxyuridine.
    Ueno Y; Mikawa M; Matsuda A
    Bioconjug Chem; 1998; 9(1):33-9. PubMed ID: 9460544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of a 1'-aminomethylthymidine and oligodeoxyribonucleotides with 1'-acylamidomethylthymidine residues.
    Grünefeld P; Richert C
    J Org Chem; 2004 Oct; 69(22):7543-51. PubMed ID: 15497980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligodeoxynucleotides incorporating structurally simple 5-alkynyl-2'-deoxyuridines fluorometrically respond to hybridization.
    Hudson RH; Ghorbani-Choghamarani A
    Org Biomol Chem; 2007 Jun; 5(12):1845-8. PubMed ID: 17551631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA with branched internal side chains: synthesis of 5-tripropargylamine-dU and conjugation by an azide-alkyne double click reaction.
    Sirivolu VR; Chittepu P; Seela F
    Chembiochem; 2008 Sep; 9(14):2305-16. PubMed ID: 18780386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of the thermal stability of oligodeoxyribonucleotides containing 5-substituted 2'-deoxyuridines.
    Ahmadian M; Zhang P; Bergstrom DE
    Nucleic Acids Res; 1998 Jul; 26(13):3127-35. PubMed ID: 9628909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of oligonucleotides with 3'-terminal 5-(3-acylamidopropargyl)-3'-amino-2',3'-dideoxyuridine residues and their reactivity in single-nucleotide steps of chemical replication.
    Baumhof P; Griesang N; Bächle M; Richert C
    J Org Chem; 2006 Feb; 71(3):1060-7. PubMed ID: 16438521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA mismatch-specific base flipping by a bisacridine macrocycle.
    David A; Bleimling N; Beuck C; Lehn JM; Weinhold E; Teulade-Fichou MP
    Chembiochem; 2003 Dec; 4(12):1326-31. PubMed ID: 14661275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of fluorescence quenching and exciplex formation in DNA major groove by double incorporation of modified fluorescent deoxyuridines.
    Tanaka M; Oguma K; Saito Y; Saito I
    Bioorg Med Chem Lett; 2012 Jun; 22(12):4103-5. PubMed ID: 22578464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent 5-alkynyl-2'-deoxyuridines: high emission efficiency of a conjugated perylene nucleoside in a DNA duplex.
    Skorobogatyi MV; Malakhov AD; Pchelintseva AA; Turban AA; Bondarev SL; Korshun VA
    Chembiochem; 2006 May; 7(5):810-6. PubMed ID: 16572492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-supported synthesis and click conjugation of 4'-C-alkyne functionalized oligodeoxyribonucleotides.
    Kiviniemi A; Virta P; Lönnberg H
    Bioconjug Chem; 2010 Oct; 21(10):1890-901. PubMed ID: 20828203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition properties of donor- and acceptor-modified biphenyl-DNA.
    Zahn A; Leumann CJ
    Chemistry; 2008; 14(4):1087-94. PubMed ID: 18041013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of DNA damage: effect of thymidine glycol residues on the thermodynamic, substrate and interfacial acoustic properties of oligonucleotide duplexes.
    Yang F; Romanova E; Kubareva E; Dolinnaya N; Gajdos V; Burenina O; Fedotova E; Ellis JS; Oretskaya T; Hianik T; Thompson M
    Analyst; 2009 Jan; 134(1):41-51. PubMed ID: 19082173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.