These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 15317710)
1. Lens fluorescence and metabolic control in type 1 diabetic patients: a 14 year follow up study. Kessel L; Sander B; Dalgaard P; Larsen M Br J Ophthalmol; 2004 Sep; 88(9):1169-72. PubMed ID: 15317710 [TBL] [Abstract][Full Text] [Related]
2. Lens fluorescence in relation to metabolic control of insulin-dependent diabetes mellitus. Larsen M; Kjer B; Bendtson I; Dalgaard P; Lund-Andersen H Arch Ophthalmol; 1989 Jan; 107(1):59-62. PubMed ID: 2910288 [TBL] [Abstract][Full Text] [Related]
3. Immunochemical detection of advanced glycation end products in lens crystallins from streptozocin-induced diabetic rat. Nakayama H; Mitsuhashi T; Kuwajima S; Aoki S; Kuroda Y; Itoh T; Nakagawa S Diabetes; 1993 Feb; 42(2):345-50. PubMed ID: 8425672 [TBL] [Abstract][Full Text] [Related]
4. Corneal and lens autofluorescence in young insulin-dependent diabetic patients. Ishiko S; Yoshida A; Mori F; Abiko T; Kitaya N; Konno S; Kato Y Ophthalmologica; 1998; 212(5):301-5. PubMed ID: 9693285 [TBL] [Abstract][Full Text] [Related]
5. Lens autofluorescence in diabetes compared with the level of glycosylated hemoglobin A1c. Kjer B; Larsen M; Bendtson I; Binder C; Dalgaard P; Lund-Andersen H Acta Ophthalmol Suppl (1985); 1987; 182():100-2. PubMed ID: 2837042 [TBL] [Abstract][Full Text] [Related]
6. Lens autofluorescence is increased in newly diagnosed patients with NIDDM. Koefoed Theil P; Hansen T; Larsen M; Pedersen O; Lund-Andersen H Diabetologia; 1996 Dec; 39(12):1524-7. PubMed ID: 8960836 [TBL] [Abstract][Full Text] [Related]
7. Protein glycation and in vivo distribution of human lens fluorescence. Mota MC; Carvalho P; Ramalho JS; Cardoso E; Gaspar AM; Abreu G Int Ophthalmol; 1994-1995; 18(4):187-93. PubMed ID: 7797380 [TBL] [Abstract][Full Text] [Related]
8. [A 20-year prospective follow-up study to evaluate the development of retinopathy and nephropathy after the onset of type 1 diabetes mellitus: Contribution of glycemic control and metabolic memory]. Bolotskaya LL; Bessmertnaya EG; Shestakova MV; Shamkhalova MS; Nikankina LV; Ilyin AV; Glek IS; Zolotukhin AV; Dedov II Ter Arkh; 2017; 89(10):17-21. PubMed ID: 29171465 [TBL] [Abstract][Full Text] [Related]
9. Lens glutathione, lens protein glycation and electrophoretic patterns of lens proteins in STZ induced diabetic rats. Yarat A; Uğuz Z; Ustünel A; Emekli N Glycoconj J; 1995 Oct; 12(5):622-6. PubMed ID: 8595251 [TBL] [Abstract][Full Text] [Related]
10. Non-invasive measures of tissue autofluorescence are increased in Type 1 diabetes complications and correlate with a non-invasive measure of vascular dysfunction. Januszewski AS; Sachithanandan N; Karschimkus C; O'Neal DN; Yeung CK; Alkatib N; Jenkins AJ Diabet Med; 2012 Jun; 29(6):726-33. PubMed ID: 22211881 [TBL] [Abstract][Full Text] [Related]
11. Lens fluorescence in relation to glucose tolerance and genetic predisposition to type 2 diabetes mellitus in a population-based study. Koefoed Theil P; Kessel L; Hansen T; Lund-Andersen H; Pedersen O; Larsen M Curr Eye Res; 2006 Sep; 31(9):733-8. PubMed ID: 16966146 [TBL] [Abstract][Full Text] [Related]
12. Temporal association between lens protein glycation and cataract development in diabetic rats. Turk Z; Misur I; Turk N Acta Diabetol; 1997 Mar; 34(1):49-54. PubMed ID: 9134059 [TBL] [Abstract][Full Text] [Related]
13. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat. Ranjan M; Nayak S; Rao BS Mol Vis; 2006 Sep; 12():1077-85. PubMed ID: 17093392 [TBL] [Abstract][Full Text] [Related]
14. Prediction of retinopathy at 20 years after onset in younger-onset type 1 diabetes using mean metabolic memory-free HbA1c values: the importance of using HbA1c data of total, not partial, diabetes duration. Hirose A; Furushima D; Yamaguchi N; Kitano S; Uchigata Y Diabetes Care; 2013 Nov; 36(11):3812-4. PubMed ID: 24026558 [TBL] [Abstract][Full Text] [Related]
15. Ocular fluorometry methodological improvements and clinical studies--with special reference to the blood-retina barrier permeability to fluorescein and fluorescein glucuronide. Larsen M Acta Ophthalmol Suppl (1985); 1993; (211):1-52. PubMed ID: 8318868 [TBL] [Abstract][Full Text] [Related]
16. Glycation of nail proteins: from basic biochemical findings to a representative marker for diabetic glycation-associated target organ damage. Kishabongo AS; Katchunga P; Van Aken EH; Speeckaert R; Lagniau S; Coopman R; Speeckaert MM; Delanghe JR PLoS One; 2015; 10(3):e0120112. PubMed ID: 25781337 [TBL] [Abstract][Full Text] [Related]
17. Correlation of lens thickness with blood glucose control in diabetes mellitus. Pierro L; Brancato R; Zaganelli E; Guarisco L; Calori G Acta Ophthalmol Scand; 1996 Dec; 74(6):539-41. PubMed ID: 9017037 [TBL] [Abstract][Full Text] [Related]
18. Glycated hemoglobin. Reaction and biokinetic studies. Clinical application of hemoglobin A1c in the assessment of metabolic control in children with diabetes mellitus. Mortensen HB Dan Med Bull; 1985 Dec; 32(6):309-28. PubMed ID: 3908003 [TBL] [Abstract][Full Text] [Related]
19. Skin autofluorescence is associated with past glycaemic control and complications in type 1 diabetes mellitus. Genevieve M; Vivot A; Gonzalez C; Raffaitin C; Barberger-Gateau P; Gin H; Rigalleau V Diabetes Metab; 2013 Sep; 39(4):349-54. PubMed ID: 23643347 [TBL] [Abstract][Full Text] [Related]
20. Cumulative glycaemia as measured by lens fluorometry: association with retinopathy in type 2 diabetes. Munch IC; Larsen M; Borch-Johnsen K; Glümer C; Lund-Andersen H; Kessel L Diabetologia; 2011 Apr; 54(4):757-61. PubMed ID: 21190013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]