BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 15317768)

  • 1. Bacillus subtilis LmrA is a repressor of the lmrAB and yxaGH operons: identification of its binding site and functional analysis of lmrB and yxaGH.
    Yoshida K; Ohki YH; Murata M; Kinehara M; Matsuoka H; Satomura T; Ohki R; Kumano M; Yamane K; Fujita Y
    J Bacteriol; 2004 Sep; 186(17):5640-8. PubMed ID: 15317768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual regulation of the Bacillus subtilis regulon comprising the lmrAB and yxaGH operons and yxaF gene by two transcriptional repressors, LmrA and YxaF, in response to flavonoids.
    Hirooka K; Kunikane S; Matsuoka H; Yoshida K; Kumamoto K; Tojo S; Fujita Y
    J Bacteriol; 2007 Jul; 189(14):5170-82. PubMed ID: 17483215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes.
    Lulko AT; Buist G; Kok J; Kuipers OP
    J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of a repressor and its binding sites for regulation of the Bacillus subtilis iol divergon.
    Yoshida KI; Shibayama T; Aoyama D; Fujita Y
    J Mol Biol; 1999 Jan; 285(3):917-29. PubMed ID: 9887260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multidrug resistant phenotype of Bacillus subtilis spontaneous mutants isolated in the presence of puromycin and lincomycin.
    Murata M; Ohno S; Kumano M; Yamane K; Ohki R
    Can J Microbiol; 2003 Feb; 49(2):71-7. PubMed ID: 12718394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of orthologous hrcA genes in Escherichia coli and Bacillus subtilis.
    Wiegert T; Hagmaier K; Schumann W
    FEMS Microbiol Lett; 2004 May; 234(1):9-17. PubMed ID: 15109714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacillus subtilis ilvB operon: an intersection of global regulons.
    Shivers RP; Sonenshein AL
    Mol Microbiol; 2005 Jun; 56(6):1549-59. PubMed ID: 15916605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targets of the master regulator of biofilm formation in Bacillus subtilis.
    Chu F; Kearns DB; Branda SS; Kolter R; Losick R
    Mol Microbiol; 2006 Feb; 59(4):1216-28. PubMed ID: 16430695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription of the xyl operon is controlled in Bacillus subtilis by tandem overlapping operators spaced by four base-pairs.
    Dahl MK; Degenkolb J; Hillen W
    J Mol Biol; 1994 Oct; 243(3):413-24. PubMed ID: 7966270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon.
    Hayashi K; Kensuke T; Kobayashi K; Ogasawara N; Ogura M
    Mol Microbiol; 2006 Mar; 59(6):1714-29. PubMed ID: 16553878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phospho-sugar binding domain homologous to NagB enzymes regulates the activity of the central glycolytic genes repressor.
    Doan T; Martin L; Zorrilla S; Chaix D; Aymerich S; Labesse G; Declerck N
    Proteins; 2008 Jun; 71(4):2038-50. PubMed ID: 18186488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catabolite repression of the citST two-component system in Bacillus subtilis.
    Repizo GD; Blancato VS; Sender PD; Lolkema J; Magni C
    FEMS Microbiol Lett; 2006 Jul; 260(2):224-31. PubMed ID: 16842348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling.
    Zheng D; Constantinidou C; Hobman JL; Minchin SD
    Nucleic Acids Res; 2004; 32(19):5874-93. PubMed ID: 15520470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The Pho regulons of bacteria].
    Vershinina OA; Znamenskaia LV
    Mikrobiologiia; 2002; 71(5):581-95. PubMed ID: 12449623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HxlR, a member of the DUF24 protein family, is a DNA-binding protein that acts as a positive regulator of the formaldehyde-inducible hxlAB operon in Bacillus subtilis.
    Yurimoto H; Hirai R; Matsuno N; Yasueda H; Kato N; Sakai Y
    Mol Microbiol; 2005 Jul; 57(2):511-9. PubMed ID: 15978081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids.
    Shivers RP; Sonenshein AL
    Mol Microbiol; 2004 Jul; 53(2):599-611. PubMed ID: 15228537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Search for additional targets of the transcriptional regulator CcpN from Bacillus subtilis.
    Eckart RA; Brantl S; Licht A
    FEMS Microbiol Lett; 2009 Oct; 299(2):223-31. PubMed ID: 19732150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility.
    Partridge JD; Bodenmiller DM; Humphrys MS; Spiro S
    Mol Microbiol; 2009 Aug; 73(4):680-94. PubMed ID: 19656291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon.
    Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I
    Nucleic Acids Res; 2007; 35(14):4755-66. PubMed ID: 17617643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of aromatic residues critical to the DNA binding and ligand response of the Bacillus subtilis QdoR (YxaF) repressor antagonized by flavonoids.
    Hirooka K; Fujita Y
    Biosci Biotechnol Biochem; 2011; 75(7):1325-34. PubMed ID: 21737930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.