These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 15317790)

  • 1. Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae.
    McLeod MP; Qin X; Karpathy SE; Gioia J; Highlander SK; Fox GE; McNeill TZ; Jiang H; Muzny D; Jacob LS; Hawes AC; Sodergren E; Gill R; Hume J; Morgan M; Fan G; Amin AG; Gibbs RA; Hong C; Yu XJ; Walker DH; Weinstock GM
    J Bacteriol; 2004 Sep; 186(17):5842-55. PubMed ID: 15317790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii to the recent Rickettsia typhi.
    Walker DH; Yu XJ
    Ann N Y Acad Sci; 2005 Dec; 1063():13-25. PubMed ID: 16481486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial small RNAs in the Genus Rickettsia.
    Schroeder CL; Narra HP; Rojas M; Sahni A; Patel J; Khanipov K; Wood TG; Fofanov Y; Sahni SK
    BMC Genomics; 2015 Dec; 16():1075. PubMed ID: 26679185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of evolution in Rickettsia conorii and R. prowazekii.
    Ogata H; Audic S; Renesto-Audiffren P; Fournier PE; Barbe V; Samson D; Roux V; Cossart P; Weissenbach J; Claverie JM; Raoult D
    Science; 2001 Sep; 293(5537):2093-8. PubMed ID: 11557893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes.
    Andersson JO; Andersson SG
    Mol Biol Evol; 2001 May; 18(5):829-39. PubMed ID: 11319266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of highly variable intergenic spacer sequences for multispacer typing of Rickettsia conorii strains.
    Fournier PE; Zhu Y; Ogata H; Raoult D
    J Clin Microbiol; 2004 Dec; 42(12):5757-66. PubMed ID: 15583310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic study of Rickettsia species using sequences of the autotransporter protein-encoding gene sca2.
    Ngwamidiba M; Blanc G; Ogata H; Raoult D; Fournier PE
    Ann N Y Acad Sci; 2005 Dec; 1063():94-9. PubMed ID: 16481498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the rickettsiae.
    Roux V; Rydkina E; Eremeeva M; Raoult D
    Int J Syst Bacteriol; 1997 Apr; 47(2):252-61. PubMed ID: 9103608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotypic characterization of rickettsiae by DNA probes generated from Rickettsia prowazekii DNA.
    Demkin VV; Rydkina EB; Likhoded LY; Ignatovich VF; Genig VA; Balayeva NM
    Acta Virol; 1994 Apr; 38(2):65-70. PubMed ID: 7976865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of genome size and restriction pattern polymorphism of Rickettsia prowazekii and Rickettsia typhi by pulsed field gel electrophoresis.
    Eremeeva ME; Roux V; Raoult D
    FEMS Microbiol Lett; 1993 Aug; 112(1):105-12. PubMed ID: 8104842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative sequence analysis of a genus-common rickettsial antigen gene.
    Anderson BE; Tzianabos T
    J Bacteriol; 1989 Sep; 171(9):5199-201. PubMed ID: 2768201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotypic identification and phylogenetic analysis of the spotted fever group rickettsiae by pulsed-field gel electrophoresis.
    Roux V; Raoult D
    J Bacteriol; 1993 Aug; 175(15):4895-904. PubMed ID: 8393009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of host-cell signalling mechanisms activated in response to infection with Rickettsia conorii and Rickettsia typhi.
    Rydkina E; Sahni A; Silverman DJ; Sahni SK
    J Med Microbiol; 2007 Jul; 56(Pt 7):896-906. PubMed ID: 17577053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antigenic relationships between the typhus and spotted fever groups of rickettsiae.
    Ormsbee R; Peacock M; Philip R; Casper E; Plorde J; Gabre-Kidan T; Wright L
    Am J Epidemiol; 1978 Jul; 108(1):53-9. PubMed ID: 99029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeny of Rickettsia spp. inferred by comparing sequences of 'gene D', which encodes an intracytoplasmic protein.
    Sekeyova Z; Roux V; Raoult D
    Int J Syst Evol Microbiol; 2001 Jul; 51(Pt 4):1353-1360. PubMed ID: 11491333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteins of typhus and spotted fever group rickettsiae.
    Eisemann CS; Osterman JV
    Infect Immun; 1976 Jul; 14(1):155-62. PubMed ID: 820639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antigenic relationships among the rickettsiae of the spotted fever and typhus groups.
    Vishwanath S
    FEMS Microbiol Lett; 1991 Jul; 65(3):341-4. PubMed ID: 1916232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Spotted fever group rickettsiosis and vectors in Kanagawa prefecture].
    Katayama T; Furuya Y; Yoshida Y; Kaiho I
    Kansenshogaku Zasshi; 1996 Jun; 70(6):561-8. PubMed ID: 8741704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some lessons from Rickettsia genomics.
    Renesto P; Ogata H; Audic S; Claverie JM; Raoult D
    FEMS Microbiol Rev; 2005 Jan; 29(1):99-117. PubMed ID: 15652978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly sensitive and specific real-time PCR assay for the detection of spotted fever and typhus group Rickettsiae.
    Stenos J; Graves SR; Unsworth NB
    Am J Trop Med Hyg; 2005 Dec; 73(6):1083-5. PubMed ID: 16354816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.