BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15317793)

  • 1. The htx and ptx operons of Pseudomonas stutzeri WM88 are new members of the pho regulon.
    White AK; Metcalf WW
    J Bacteriol; 2004 Sep; 186(17):5876-82. PubMed ID: 15317793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite.
    White AK; Metcalf WW
    J Bacteriol; 2004 Jul; 186(14):4730-9. PubMed ID: 15231805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88.
    Metcalf WW; Wolfe RS
    J Bacteriol; 1998 Nov; 180(21):5547-58. PubMed ID: 9791102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic diversity and horizontal transfer of genes involved in oxidation of reduced phosphorus compounds by Alcaligenes faecalis WM2072.
    Wilson MM; Metcalf WW
    Appl Environ Microbiol; 2005 Jan; 71(1):290-6. PubMed ID: 15640200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of tetralin biodegradation and identification of genes essential for expression of thn operons.
    Martínez-Pérez O; Moreno-Ruiz E; Floriano B; Santero E
    J Bacteriol; 2004 Sep; 186(18):6101-9. PubMed ID: 15342579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular basis of phosphite and hypophosphite recognition by ABC-transporters.
    Bisson C; Adams NBP; Stevenson B; Brindley AA; Polyviou D; Bibby TS; Baker PJ; Hunter CN; Hitchcock A
    Nat Commun; 2017 Nov; 8(1):1746. PubMed ID: 29170493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria.
    Lidbury ID; Murphy AR; Scanlan DJ; Bending GD; Jones AM; Moore JD; Goodall A; Hammond JP; Wellington EM
    Environ Microbiol; 2016 Oct; 18(10):3535-3549. PubMed ID: 27233093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and biochemical characterization of hypophosphite/2-oxoglutarate dioxygenase. A novel phosphorus-oxidizing enzyme from Psuedomonas stutzeri WM88.
    White AK; Metcalf WW
    J Biol Chem; 2002 Oct; 277(41):38262-71. PubMed ID: 12161433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1.
    Monds RD; Newell PD; Schwartzman JA; O'Toole GA
    Appl Environ Microbiol; 2006 Mar; 72(3):1910-24. PubMed ID: 16517638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis.
    Lizewski SE; Schurr JR; Jackson DW; Frisk A; Carterson AJ; Schurr MJ
    J Bacteriol; 2004 Sep; 186(17):5672-84. PubMed ID: 15317771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD.
    Puri-Taneja A; Schau M; Chen Y; Hulett FM
    J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide analysis of phosphorylated PhoP binding to chromosomal DNA reveals several novel features of the PhoPR-mediated phosphate limitation response in Bacillus subtilis.
    Salzberg LI; Botella E; Hokamp K; Antelmann H; Maaß S; Becher D; Noone D; Devine KM
    J Bacteriol; 2015 Apr; 197(8):1492-506. PubMed ID: 25666134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel members of the phosphate regulon in Escherichia coli O157:H7 identified using a whole-genome shotgun approach.
    Yoshida Y; Sugiyama S; Oyamada T; Yokoyama K; Makino K
    Gene; 2012 Jul; 502(1):27-35. PubMed ID: 22504029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene regulation by phosphate in enteric bacteria.
    Wanner BL
    J Cell Biochem; 1993 Jan; 51(1):47-54. PubMed ID: 8432742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphite disrupts the acclimation of Saccharomyces cerevisiae to phosphate starvation.
    McDonald AE; Niere JO; Plaxton WC
    Can J Microbiol; 2001 Nov; 47(11):969-78. PubMed ID: 11766057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine-tuning control of phoBR expression in Vibrio cholerae by binding of phoB to multiple pho boxes.
    Diniz MM; Goulart CL; Barbosa LC; Farache J; Lery LM; Pacheco AB; Bisch PM; von Krüger WM
    J Bacteriol; 2011 Dec; 193(24):6929-38. PubMed ID: 21984792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ugp and PitA participate in the selection of PHO-constitutive mutants.
    Iglesias Neves H; Pereira TF; Yagil E; Spira B
    J Bacteriol; 2015 Apr; 197(8):1378-85. PubMed ID: 25645557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon: evidence of a new role for the PhoU protein in the phosphate regulon.
    Steed PM; Wanner BL
    J Bacteriol; 1993 Nov; 175(21):6797-809. PubMed ID: 8226621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phosphotransferase protein EIIA(Ntr) modulates the phosphate starvation response through interaction with histidine kinase PhoR in Escherichia coli.
    Lüttmann D; Göpel Y; Görke B
    Mol Microbiol; 2012 Oct; 86(1):96-110. PubMed ID: 22812494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18.
    Ge Y; Huang X; Wang S; Zhang X; Xu Y
    FEMS Microbiol Lett; 2004 Aug; 237(1):41-7. PubMed ID: 15268936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.