BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 15317797)

  • 21. Probing the substrate specificities of matriptase, matriptase-2, hepsin and DESC1 with internally quenched fluorescent peptides.
    Béliveau F; Désilets A; Leduc R
    FEBS J; 2009 Apr; 276(8):2213-26. PubMed ID: 19302215
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochemical characterization of prostasin, a channel activating protease.
    Shipway A; Danahay H; Williams JA; Tully DC; Backes BJ; Harris JL
    Biochem Biophys Res Commun; 2004 Nov; 324(2):953-63. PubMed ID: 15474520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. IL-1-converting enzyme requires aspartic acid residues for processing of the IL-1 beta precursor at two distinct sites and does not cleave 31-kDa IL-1 alpha.
    Howard AD; Kostura MJ; Thornberry N; Ding GJ; Limjuco G; Weidner J; Salley JP; Hogquist KA; Chaplin DD; Mumford RA
    J Immunol; 1991 Nov; 147(9):2964-9. PubMed ID: 1919001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative study of kallikrein-like serine proteinases from rat submandibular glands.
    Bedi GS
    Prep Biochem Biotechnol; 1996 May; 26(2):85-104. PubMed ID: 8784920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cleavage specificity of the subtilisin-like protease C1 from soybean.
    Boyd PM; Barnaby N; Tan-Wilson A; Wilson KA
    Biochim Biophys Acta; 2002 Apr; 1596(2):269-82. PubMed ID: 12007608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of substrate sequences for membrane type-1 matrix metalloproteinase using bacteriophage peptide display library.
    Ohkubo S; Miyadera K; Sugimoto Y; Matsuo K; Wierzba K; Yamada Y
    Biochem Biophys Res Commun; 1999 Dec; 266(2):308-13. PubMed ID: 10600499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cleavage site analysis of a serralysin-like protease, PrtA, from an insect pathogen Photorhabdus luminescens and development of a highly sensitive and specific substrate.
    Marokházi J; Mihala N; Hudecz F; Fodor A; Gráf L; Venekei I
    FEBS J; 2007 Apr; 274(8):1946-56. PubMed ID: 17355285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of enzymatically active human granzyme 3 in Escherichia coli for analysis of its substrate specificity.
    Hirata Y; Inagaki H; Shimizu T; Li Q; Nagahara N; Minami M; Kawada T
    Arch Biochem Biophys; 2006 Feb; 446(1):35-43. PubMed ID: 16405860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic and modeling studies of S3-S3' subsites of HIV proteinases.
    Tözsér J; Weber IT; Gustchina A; Bláha I; Copeland TD; Louis JM; Oroszlan S
    Biochemistry; 1992 May; 31(20):4793-800. PubMed ID: 1591240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cleavage-site specificity of prolyl endopeptidase FAP investigated with a full-length protein substrate.
    Huang CH; Suen CS; Lin CT; Chien CH; Lee HY; Chung KM; Tsai TY; Jiaang WT; Hwang MJ; Chen X
    J Biochem; 2011 Jun; 149(6):685-92. PubMed ID: 21288888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human cytomegalovirus protease complexes its substrate recognition sequences in an extended peptide conformation.
    LaPlante SR; Aubry N; Bonneau PR; Cameron DR; Lagacé L; Massariol MJ; Montpetit H; Plouffe C; Kawai SH; Fulton BD; Chen Z; Ni F
    Biochemistry; 1998 Jul; 37(27):9793-801. PubMed ID: 9657693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ADAM33 enzyme properties and substrate specificity.
    Zou J; Zhang R; Zhu F; Liu J; Madison V; Umland SP
    Biochemistry; 2005 Mar; 44(11):4247-56. PubMed ID: 15766253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of the substrate specificity of Factor VII activating protease (FSAP) and design of specific and sensitive peptide substrates.
    Kara E; Manna D; Løset GÅ; Schneider EL; Craik CS; Kanse S
    Thromb Haemost; 2017 Aug; 117(9):1750-1760. PubMed ID: 28726978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of P1' and P3' residues of trivalent thrombin inhibitors and their crystal structures.
    Slon-Usakiewicz JJ; Sivaraman J; Li Y; Cygler M; Konishi Y
    Biochemistry; 2000 Mar; 39(9):2384-91. PubMed ID: 10694407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescent oligopeptide substrates for kinetic characterization of the specificity of Astacus protease.
    Stöcker W; Ng M; Auld DS
    Biochemistry; 1990 Nov; 29(45):10418-25. PubMed ID: 2261483
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extended substrate specificity of rat mast cell protease 5, a rodent alpha-chymase with elastase-like primary specificity.
    Karlson U; Pejler G; Tomasini-Johansson B; Hellman L
    J Biol Chem; 2003 Oct; 278(41):39625-31. PubMed ID: 12900423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specificity of the wound-induced leucine aminopeptidase (LAP-A) of tomato activity on dipeptide and tripeptide substrates.
    Gu YQ; Walling LL
    Eur J Biochem; 2000 Feb; 267(4):1178-87. PubMed ID: 10672029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Bottom-Up Proteomic Approach to Identify Substrate Specificity of Outer-Membrane Protease OmpT.
    Wood SE; Sinsinbar G; Gudlur S; Nallani M; Huang CF; Liedberg B; Mrksich M
    Angew Chem Int Ed Engl; 2017 Dec; 56(52):16531-16535. PubMed ID: 28940795
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HIV-1 Protease Uses Bi-Specific S2/S2' Subsites to Optimize Cleavage of Two Classes of Target Sites.
    Potempa M; Lee SK; Kurt Yilmaz N; Nalivaika EA; Rogers A; Spielvogel E; Carter CW; Schiffer CA; Swanstrom R
    J Mol Biol; 2018 Dec; 430(24):5182-5195. PubMed ID: 30414407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.