BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 15317836)

  • 1. Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience.
    Thompson KG; Bichot NP; Sato TR
    J Neurophysiol; 2005 Jan; 93(1):337-51. PubMed ID: 15317836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.
    Thompson KG; Hanes DP; Bichot NP; Schall JD
    J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal dynamics of bottom-up and top-down processes in area V4 of macaque monkeys performing a visual search.
    Ogawa T; Komatsu H
    Exp Brain Res; 2006 Aug; 173(1):1-13. PubMed ID: 16506012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation.
    Murthy A; Ray S; Shorter SM; Schall JD; Thompson KG
    J Neurophysiol; 2009 May; 101(5):2485-506. PubMed ID: 19261711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Difficulty of visual search modulates neuronal interactions and response variability in the frontal eye field.
    Cohen JY; Pouget P; Woodman GF; Subraveti CR; Schall JD; Rossi AF
    J Neurophysiol; 2007 Nov; 98(5):2580-7. PubMed ID: 17855586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response variability of frontal eye field neurons modulates with sensory input and saccade preparation but not visual search salience.
    Purcell BA; Heitz RP; Cohen JY; Schall JD
    J Neurophysiol; 2012 Nov; 108(10):2737-50. PubMed ID: 22956785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccade target selection in the superior colliculus during a visual search task.
    McPeek RM; Keller EL
    J Neurophysiol; 2002 Oct; 88(4):2019-34. PubMed ID: 12364525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of presaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis.
    Hanes DP; Thompson KG; Schall JD
    Exp Brain Res; 1995; 103(1):85-96. PubMed ID: 7615040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of stimulus-response compatibility on neural selection in frontal eye field.
    Sato TR; Schall JD
    Neuron; 2003 May; 38(4):637-48. PubMed ID: 12765614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Priming in macaque frontal cortex during popout visual search: feature-based facilitation and location-based inhibition of return.
    Bichot NP; Schall JD
    J Neurosci; 2002 Jun; 22(11):4675-85. PubMed ID: 12040074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saliency and saccade encoding in the frontal eye field during natural scene search.
    Fernandes HL; Stevenson IH; Phillips AN; Segraves MA; Kording KP
    Cereb Cortex; 2014 Dec; 24(12):3232-45. PubMed ID: 23863686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frontal eye field contributions to rapid corrective saccades.
    Murthy A; Ray S; Shorter SM; Priddy EG; Schall JD; Thompson KG
    J Neurophysiol; 2007 Feb; 97(2):1457-69. PubMed ID: 17135479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the role of frontal eye field in guiding attention and saccades.
    Schall JD
    Vision Res; 2004 Jun; 44(12):1453-67. PubMed ID: 15066404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability of macaque frontal eye field neurons signaling saccade targets during visual search.
    Bichot NP; Thompson KG; Chenchal Rao S; Schall JD
    J Neurosci; 2001 Jan; 21(2):713-25. PubMed ID: 11160450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A visual salience map in the primate frontal eye field.
    Thompson KG; Bichot NP
    Prog Brain Res; 2005; 147():251-62. PubMed ID: 15581711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of target-distractor similarity on FEF visual selection in the absence of the target.
    Sato TR; Watanabe K; Thompson KG; Schall JD
    Exp Brain Res; 2003 Aug; 151(3):356-63. PubMed ID: 12802550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive activity in macaque frontal eye field neurons during natural scene searching.
    Phillips AN; Segraves MA
    J Neurophysiol; 2010 Mar; 103(3):1238-52. PubMed ID: 20018833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Prior Information to Saccade Selection: Evolution of Frontal Eye Field Activity during Natural Scene Search.
    Glaser JI; Wood DK; Lawlor PN; Segraves MA; Kording KP
    Cereb Cortex; 2020 Mar; 30(3):1957-1973. PubMed ID: 31647525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
    Burman DD; Bruce CJ
    J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic dissociation of visual selection from saccade programming in frontal eye field.
    Murthy A; Thompson KG; Schall JD
    J Neurophysiol; 2001 Nov; 86(5):2634-7. PubMed ID: 11698551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.