BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15317854)

  • 1. The role of hippocampal glutamate receptor-A-dependent synaptic plasticity in conditional learning: the importance of spatiotemporal discontiguity.
    Schmitt WB; Arianpour R; Deacon RM; Seeburg PH; Sprengel R; Rawlins JN; Bannerman DM
    J Neurosci; 2004 Aug; 24(33):7277-82. PubMed ID: 15317854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMDA receptor subunit NR2A is required for rapidly acquired spatial working memory but not incremental spatial reference memory.
    Bannerman DM; Niewoehner B; Lyon L; Romberg C; Schmitt WB; Taylor A; Sanderson DJ; Cottam J; Sprengel R; Seeburg PH; Köhr G; Rawlins JN
    J Neurosci; 2008 Apr; 28(14):3623-30. PubMed ID: 18385321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GluR-A-Deficient mice display normal acquisition of a hippocampus-dependent spatial reference memory task but are impaired during spatial reversal.
    Bannerman DM; Deacon RM; Seeburg PH; Rawlins JN
    Behav Neurosci; 2003 Aug; 117(4):866-70. PubMed ID: 12931971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forebrain-specific glutamate receptor B deletion impairs spatial memory but not hippocampal field long-term potentiation.
    Shimshek DR; Jensen V; Celikel T; Geng Y; Schupp B; Bus T; Mack V; Marx V; Hvalby Ø; Seeburg PH; Sprengel R
    J Neurosci; 2006 Aug; 26(33):8428-40. PubMed ID: 16914668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta 1-integrins are required for hippocampal AMPA receptor-dependent synaptic transmission, synaptic plasticity, and working memory.
    Chan CS; Weeber EJ; Zong L; Fuchs E; Sweatt JD; Davis RL
    J Neurosci; 2006 Jan; 26(1):223-32. PubMed ID: 16399691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial memory dissociations in mice lacking GluR1.
    Reisel D; Bannerman DM; Schmitt WB; Deacon RM; Flint J; Borchardt T; Seeburg PH; Rawlins JN
    Nat Neurosci; 2002 Sep; 5(9):868-73. PubMed ID: 12195431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional differences in hippocampal PKA immunoreactivity after training and reversal training in a spatial Y-maze task.
    Havekes R; Timmer M; Van der Zee EA
    Hippocampus; 2007; 17(5):338-48. PubMed ID: 17315197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gender specific requirement of GluR1 receptors in contextual conditioning but not spatial learning.
    Dachtler J; Fox KD; Good MA
    Neurobiol Learn Mem; 2011 Oct; 96(3):461-7. PubMed ID: 21810476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired regulation of synaptic strength in hippocampal neurons from GluR1-deficient mice.
    Andrásfalvy BK; Smith MA; Borchardt T; Sprengel R; Magee JC
    J Physiol; 2003 Oct; 552(Pt 1):35-45. PubMed ID: 12878757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning.
    Zamanillo D; Sprengel R; Hvalby O; Jensen V; Burnashev N; Rozov A; Kaiser KM; Köster HJ; Borchardt T; Worley P; Lübke J; Frotscher M; Kelly PH; Sommer B; Andersen P; Seeburg PH; Sakmann B
    Science; 1999 Jun; 284(5421):1805-11. PubMed ID: 10364547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GluR-A-dependent synaptic plasticity is required for the temporal encoding of nonspatial information.
    Reisel D; Bannerman DM; Deacon RM; Sprengel R; Seeburg PH; Rawlins JN
    Behav Neurosci; 2005 Oct; 119(5):1298-306. PubMed ID: 16300436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective disruption of stimulus-reward learning in glutamate receptor gria1 knock-out mice.
    Mead AN; Stephens DN
    J Neurosci; 2003 Feb; 23(3):1041-8. PubMed ID: 12574434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the GluR-A (GluR1) AMPA receptor subunit in learning and memory.
    Sanderson DJ; Good MA; Seeburg PH; Sprengel R; Rawlins JN; Bannerman DM
    Prog Brain Res; 2008; 169():159-78. PubMed ID: 18394473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial learning and synaptic hippocampal plasticity in type 2 somatostatin receptor knock-out mice.
    Dutar P; Vaillend C; Viollet C; Billard JM; Potier B; Carlo AS; Ungerer A; Epelbaum J
    Neuroscience; 2002; 112(2):455-66. PubMed ID: 12044463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired outcome-specific devaluation of instrumental responding in mice with a targeted deletion of the AMPA receptor glutamate receptor 1 subunit.
    Johnson AW; Bannerman DM; Rawlins NP; Sprengel R; Good MA
    J Neurosci; 2005 Mar; 25(9):2359-65. PubMed ID: 15745962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of excitotoxic hippocampal lesions on simple and conditional discrimination learning in the rat.
    Murray TK; Ridley RM
    Behav Brain Res; 1999 Feb; 99(1):103-13. PubMed ID: 10512577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity, hippocampal place cells, and cognitive maps.
    Shapiro M
    Arch Neurol; 2001 Jun; 58(6):874-81. PubMed ID: 11405801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep deprivation impairs spatial working memory and reduces hippocampal AMPA receptor phosphorylation.
    Hagewoud R; Havekes R; Novati A; Keijser JN; Van der Zee EA; Meerlo P
    J Sleep Res; 2010 Jun; 19(2):280-8. PubMed ID: 20050994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial reference memory in GluR-A-deficient mice using a novel hippocampal-dependent paddling pool escape task.
    Schmitt WB; Deacon RM; Reisel D; Sprengel R; Seeburg PH; Rawlins JN; Bannerman DM
    Hippocampus; 2004; 14(2):216-23. PubMed ID: 15098726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-A-deficient mice.
    Schmitt WB; Deacon RM; Seeburg PH; Rawlins JN; Bannerman DM
    J Neurosci; 2003 May; 23(9):3953-9. PubMed ID: 12736365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.