These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15317863)

  • 1. Gain and loss of channel function by alanine substitutions in the transmembrane segments of the rat ATP-gated P2X2 receptor.
    Li Z; Migita K; Samways DS; Voigt MM; Egan TM
    J Neurosci; 2004 Aug; 24(33):7378-86. PubMed ID: 15317863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thr339-to-serine substitution in rat P2X2 receptor second transmembrane domain causes constitutive opening and indicates a gating role for Lys308.
    Cao L; Young MT; Broomhead HE; Fountain SJ; North RA
    J Neurosci; 2007 Nov; 27(47):12916-23. PubMed ID: 18032665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of transmembrane regions to ATP-gated P2X2 channel permeability dynamics.
    Khakh BS; Egan TM
    J Biol Chem; 2005 Feb; 280(7):6118-29. PubMed ID: 15556949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method.
    Egan TM; Haines WR; Voigt MM
    J Neurosci; 1998 Apr; 18(7):2350-9. PubMed ID: 9502796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the role of the first transmembrane domain in cation permeability and flux of the ATP-gated P2X2 receptor.
    Samways DS; Migita K; Li Z; Egan TM
    J Biol Chem; 2008 Feb; 283(8):5110-7. PubMed ID: 18048351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the contribution of the first transmembrane domain to whole-cell current through an ATP-gated ionotropic P2X receptor.
    Haines WR; Voigt MM; Migita K; Torres GE; Egan TM
    J Neurosci; 2001 Aug; 21(16):5885-92. PubMed ID: 11487611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary structure and gating rearrangements of transmembrane segments in rat P2X4 receptor channels.
    Silberberg SD; Chang TH; Swartz KJ
    J Gen Physiol; 2005 Apr; 125(4):347-59. PubMed ID: 15795310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subunit arrangement in P2X receptors.
    Jiang LH; Kim M; Spelta V; Bo X; Surprenant A; North RA
    J Neurosci; 2003 Oct; 23(26):8903-10. PubMed ID: 14523092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP binding at human P2X1 receptors. Contribution of aromatic and basic amino acids revealed using mutagenesis and partial agonists.
    Roberts JA; Evans RJ
    J Biol Chem; 2004 Mar; 279(10):9043-55. PubMed ID: 14699168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct gating of ATP-activated ion channels (P2X2 receptors) by lipophilic attachment at the outer end of the second transmembrane domain.
    Rothwell SW; Stansfeld PJ; Bragg L; Verkhratsky A; North RA
    J Biol Chem; 2014 Jan; 289(2):618-26. PubMed ID: 24273165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P2X receptor chimeras highlight roles of the amino terminus to partial agonist efficacy, the carboxyl terminus to recovery from desensitization, and independent regulation of channel transitions.
    Allsopp RC; Farmer LK; Fryatt AG; Evans RJ
    J Biol Chem; 2013 Jul; 288(29):21412-21421. PubMed ID: 23740251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topological analysis of the ATP-gated ionotropic [correction of ionotrophic] P2X2 receptor subunit.
    Torres GE; Egan TM; Voigt MM
    FEBS Lett; 1998 Mar; 425(1):19-23. PubMed ID: 9540999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and structural identification of amino acid residues of the P2X2 receptor channel critical for the voltage- and [ATP]-dependent gating.
    Keceli B; Kubo Y
    J Physiol; 2009 Dec; 587(Pt 24):5801-18. PubMed ID: 19884318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors.
    Roberts JA; Evans RJ
    J Neurosci; 2007 Apr; 27(15):4072-82. PubMed ID: 17428985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density-dependent changes of the pore properties of the P2X2 receptor channel.
    Fujiwara Y; Kubo Y
    J Physiol; 2004 Jul; 558(Pt 1):31-43. PubMed ID: 15107474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics to identify proteins interacting with P2X2 ligand-gated cation channels.
    Singh H; Warburton S; Vondriska TM; Khakh BS
    J Vis Exp; 2009 May; (27):. PubMed ID: 19455095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A putative extracellular salt bridge at the subunit interface contributes to the ion channel function of the ATP-gated P2X2 receptor.
    Jiang R; Martz A; Gonin S; Taly A; de Carvalho LP; Grutter T
    J Biol Chem; 2010 May; 285(21):15805-15. PubMed ID: 20308075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gating the pore of P2X receptor channels.
    Li M; Chang TH; Silberberg SD; Swartz KJ
    Nat Neurosci; 2008 Aug; 11(8):883-7. PubMed ID: 18587390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore dilation of neuronal P2X receptor channels.
    Virginio C; MacKenzie A; Rassendren FA; North RA; Surprenant A
    Nat Neurosci; 1999 Apr; 2(4):315-21. PubMed ID: 10204537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage- and [ATP]-dependent gating of the P2X(2) ATP receptor channel.
    Fujiwara Y; Keceli B; Nakajo K; Kubo Y
    J Gen Physiol; 2009 Jan; 133(1):93-109. PubMed ID: 19114637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.