BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 15317998)

  • 1. Measurement of intermediate exchange phenomena.
    Kempf JG; Loria JP
    Methods Mol Biol; 2004; 278():185-231. PubMed ID: 15317998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for slow motion in proteins by multiple refocusing of heteronuclear nitrogen/proton multiple quantum coherences in NMR.
    Dittmer J; Bodenhausen G
    J Am Chem Soc; 2004 Feb; 126(5):1314-5. PubMed ID: 14759169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring the signs of 1H(alpha) chemical shift differences between ground and excited protein states by off-resonance spin-lock R(1rho) NMR spectroscopy.
    Auer R; Neudecker P; Muhandiram DR; Lundström P; Hansen DF; Konrat R; Kay LE
    J Am Chem Soc; 2009 Aug; 131(31):10832-3. PubMed ID: 19606858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Off-resonance TROSY (R1 rho - R1) for quantitation of fast exchange processes in large proteins.
    Kempf JG; Jung JY; Sampson NS; Loria JP
    J Am Chem Soc; 2003 Oct; 125(40):12064-5. PubMed ID: 14518971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein dynamics from NMR.
    Ishima R; Torchia DA
    Nat Struct Biol; 2000 Sep; 7(9):740-3. PubMed ID: 10966641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-terminal domain of insulin-like growth factor (IGF) binding protein 6: conformational exchange and its correlation with IGF-II binding.
    Yao S; Headey SJ; Keizer DW; Bach LA; Norton RS
    Biochemistry; 2004 Sep; 43(35):11187-95. PubMed ID: 15366928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manifestations of slow site exchange processes in solution NMR: a continuous Gaussian exchange model.
    Schurr JM; Fujimoto BS; Diaz R; Robinson BH
    J Magn Reson; 1999 Oct; 140(2):404-31. PubMed ID: 10497047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Off-resonance TROSY-selected R 1rho experiment with improved sensitivity for medium- and high-molecular-weight proteins.
    Igumenova TI; Palmer AG
    J Am Chem Soc; 2006 Jun; 128(25):8110-1. PubMed ID: 16787055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution NMR spin relaxation methods for characterizing chemical exchange in high-molecular-weight systems.
    Palmer AG; Grey MJ; Wang C
    Methods Enzymol; 2005; 394():430-65. PubMed ID: 15808232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in dynamics of SRE-RNA on binding to the VTS1p-SAM domain studied by 13C NMR relaxation.
    Oberstrass FC; Allain FH; Ravindranathan S
    J Am Chem Soc; 2008 Sep; 130(36):12007-20. PubMed ID: 18698768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences.
    Jarymowycz VA; Stone MJ
    Chem Rev; 2006 May; 106(5):1624-71. PubMed ID: 16683748
    [No Abstract]   [Full Text] [Related]  

  • 13. Slow conformational dynamics in the hamster prion protein.
    Kuwata K; Kamatari YO; Akasaka K; James TL
    Biochemistry; 2004 Apr; 43(15):4439-46. PubMed ID: 15078089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying millisecond exchange dynamics in proteins by CPMG relaxation dispersion NMR using side-chain 1H probes.
    Hansen AL; Lundström P; Velyvis A; Kay LE
    J Am Chem Soc; 2012 Feb; 134(6):3178-89. PubMed ID: 22300166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of anisotropic protein backbone dynamics.
    Wang T; Cai S; Zuiderweg ER
    J Am Chem Soc; 2003 Jul; 125(28):8639-43. PubMed ID: 12848571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data.
    Kitao A; Wagner G
    Magn Reson Chem; 2006 Jul; 44 Spec No():S130-42. PubMed ID: 16823895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the overall rotational diffusion of a protein from 15N relaxation measurements and hydrodynamic calculations.
    Blake-Hall J; Walker O; Fushman D
    Methods Mol Biol; 2004; 278():139-60. PubMed ID: 15317996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic collective motion contributes to nuclear spin relaxation in crystalline proteins.
    Lewandowski JR; Sein J; Blackledge M; Emsley L
    J Am Chem Soc; 2010 Feb; 132(4):1246-8. PubMed ID: 19916496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR studies of protein structure and dynamics.
    Kay LE
    J Magn Reson; 2005 Apr; 173(2):193-207. PubMed ID: 15780912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.