These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 1531809)
1. Evidence for glial control of extracellular pH in the leech central nervous system. Deitmer JW Glia; 1992; 5(1):43-7. PubMed ID: 1531809 [TBL] [Abstract][Full Text] [Related]
2. Electrogenic sodium-dependent bicarbonate secretion by glial cells of the leech central nervous system. Deitmer JW J Gen Physiol; 1991 Sep; 98(3):637-55. PubMed ID: 1761972 [TBL] [Abstract][Full Text] [Related]
4. Membrane potential dependence of intracellular pH regulation by identified glial cells in the leech central nervous system. Deitmer JW; Szatkowski M J Physiol; 1990 Feb; 421():617-31. PubMed ID: 2112195 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of pH recovery from intracellular acid loads in the leech connective glial cell. Szatkowski M; Schlue WR Glia; 1992; 5(3):193-200. PubMed ID: 1534066 [TBL] [Abstract][Full Text] [Related]
6. The regulation of intracellular pH by identified glial cells and neurones in the central nervous system of the leech. Deitmer JW; Schlue WR J Physiol; 1987 Jul; 388():261-83. PubMed ID: 2821243 [TBL] [Abstract][Full Text] [Related]
7. Evidence that glial cells modulate extracellular pH transients induced by neuronal activity in the leech central nervous system. Rose CR; Deitmer JW J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):1-5. PubMed ID: 7853232 [TBL] [Abstract][Full Text] [Related]
8. Acid/base transport across the leech giant glial cell membrane at low external bicarbonate concentration. Deitmer JW; Schneider HP J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):459-69. PubMed ID: 9763635 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of glutamate uptake transport by CO(2)/bicarbonate in the leech giant glial cell. Deitmer JW; Schneider HP Glia; 2000 Jun; 30(4):392-400. PubMed ID: 10797619 [TBL] [Abstract][Full Text] [Related]
11. Rod phototransduction modulated by bicarbonate in the frog retina: roles of carbonic anhydrase and bicarbonate exchange. Donner K; Hemilä S; Kalamkarov G; Koskelainen A; Shevchenko T J Physiol; 1990 Jul; 426():297-316. PubMed ID: 2172515 [TBL] [Abstract][Full Text] [Related]
12. Independent changes of intracellular calcium and pH in identified leech glial cells. Deitmer JW; Schneider HP; Munsch T Glia; 1993 Apr; 7(4):299-306. PubMed ID: 8391515 [TBL] [Abstract][Full Text] [Related]
13. Ionic mechanisms of intracellular pH regulation in the nervous system. Schlue WR; Deitmer JW Ciba Found Symp; 1988; 139():47-69. PubMed ID: 2849530 [TBL] [Abstract][Full Text] [Related]
14. Anion channels contribute to the regulation of intracellular pH in human platelets. Ozaki Y; Yatomi Y; Kariya T; Kume S Thromb Res; 1989 Feb; 53(3):221-30. PubMed ID: 2470162 [TBL] [Abstract][Full Text] [Related]
15. Intracellular acidification of the leech giant glial cell evoked by glutamate and aspartate. Deitmer JW; Schneider HP Glia; 1997 Feb; 19(2):111-22. PubMed ID: 9034828 [TBL] [Abstract][Full Text] [Related]
16. Bicarbonate-dependent changes of intracellular sodium and pH in identified leech glial cells. Deitmer JW Pflugers Arch; 1992 Apr; 420(5-6):584-9. PubMed ID: 1614834 [TBL] [Abstract][Full Text] [Related]
17. CO2 transport properties of the blood of a primitive vertebrate, Myxine glutinosa (L.). Tufts BL; Boutilier RG Exp Biol; 1990; 48(6):341-7. PubMed ID: 2114305 [TBL] [Abstract][Full Text] [Related]
19. Bicarbonate/chloride antiport in Vero cells: I. Evidence for both sodium-linked and sodium-independent exchange. Tønnessen TI; Ludt J; Sandvig K; Olsnes S J Cell Physiol; 1987 Aug; 132(2):183-91. PubMed ID: 3624314 [TBL] [Abstract][Full Text] [Related]
20. The regulation of intracellular pH studied by 31P- and 1H-NMR spectroscopy in superfused guinea-pig cerebral cortex slices. Brooks KJ; Bachelard HS Neurochem Int; 1992 Oct; 21(3):375-9. PubMed ID: 1303163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]