These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1531872)

  • 21. Atypical abasic sites generated by neocarzinostatin at sequence-specific cytidylate residues in oligodeoxynucleotides.
    Kappen LS; Chen CQ; Goldberg IH
    Biochemistry; 1988 Jun; 27(12):4331-40. PubMed ID: 2458753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted base substitutions and small deletions induced by neocarzinostatin at the APRT locus in plateau-phase CHO cells.
    Wang P; Povirk LF
    Mutat Res; 1997 Jan; 373(1):17-29. PubMed ID: 9015149
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sites in the diyne-ene bicyclic core of neocarzinostatin chromophore responsible for hydrogen abstraction from DNA.
    Chin DH; Zeng CH; Costello CE; Goldberg IH
    Biochemistry; 1988 Oct; 27(21):8106-14. PubMed ID: 2976601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA damage and repair in relation to cell killing in neocarzinostatin-treated HeLa cells.
    Hatayama T; Goldberg IH
    Biochim Biophys Acta; 1979 Jun; 563(1):59-71. PubMed ID: 159073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence-specific, strand-selective, and directional binding of neocarzinostatin chromophore to oligodeoxyribonucleotides.
    Lee SH; Goldberg IH
    Biochemistry; 1989 Feb; 28(3):1019-26. PubMed ID: 2523731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA microstructural requirements for neocarzinostatin chromophore-induced direct strand cleavage.
    Lee SH; Thivierge JO; Goldberg IH
    Nucleic Acids Res; 1989 Jul; 17(14):5809-25. PubMed ID: 2527356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Site-specific cleavage at a DNA bulge by neocarzinostatin chromophore via a novel mechanism.
    Kappen LS; Goldberg IH
    Biochemistry; 1993 Dec; 32(48):13138-45. PubMed ID: 8241168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence specific cleavage of DNA by the antitumor antibiotics neocarzinostatin and bleomycin.
    D'Andrea AD; Haseltine WA
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3608-12. PubMed ID: 80799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Delocalized electronic structure of the thiol sulfur substantially prevents nucleic acid damage induced by neocarzinostatin.
    Kuo HM; Lee Chao PD; Chin DH
    Biochemistry; 2002 Jan; 41(3):897-905. PubMed ID: 11790112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of neocarzinostatin chromophore and formation of nascent DNA damage do not require molecular oxygen.
    Kappen LS; Goldberg IH
    Nucleic Acids Res; 1985 Mar; 13(5):1637-48. PubMed ID: 3158880
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mechanism of novel DNA sugar damage by an antitumour protein antibiotic.
    Goldberg IH; Kappen LS; Povirk LF; Chin DH
    Drugs Exp Clin Res; 1986; 12(6-7):495-505. PubMed ID: 2943568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of bleomycin, neocarzinostatin, and auromomycin cleavage of cell-free and intracellular simian virus 40 DNA and chromatin.
    Grimwade JE; Beerman TA
    Mol Pharmacol; 1986 Oct; 30(4):358-63. PubMed ID: 2429169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic analyses of site-specific degradation in DNA-RNA hybrids by prototypic DNA cleavers.
    Bansal M; Lee JS; Stubbe J; Kozarich JW
    Nucleic Acids Res; 1997 May; 25(9):1836-45. PubMed ID: 9108169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA strand scission by neocarzinostatin: molecular recognition process responsible for site-specificity.
    Sugiyama H; Fujiwara T; Kawabata H; Saito I; Hirayama N; Yoda N
    Nucleic Acids Symp Ser; 1990; (22):55-6. PubMed ID: 2151670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New complex of post-activated neocarzinostatin chromophore with DNA: bulge DNA binding from the minor groove.
    Kwon Y; Xi Z; Kappen LS; Goldberg IH; Gao X
    Biochemistry; 2003 Feb; 42(5):1186-98. PubMed ID: 12564921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of HeLa cell chromatin by neocarzinostatin and its chromophore.
    McHugh MM; Woynarowski J; Beerman T
    Biochim Biophys Acta; 1982 Jan; 696(1):7-14. PubMed ID: 6211192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mismatch-induced switch of neocarzinostatin attack sites in the DNA minor groove.
    Kappen LS; Goldberg IH
    Biochemistry; 1992 Sep; 31(37):9081-9. PubMed ID: 1390695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of thiol structure on neocarzinostatin activation and expression of DNA damage.
    Dedon PC; Goldberg IH
    Biochemistry; 1992 Feb; 31(7):1909-17. PubMed ID: 1531615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of a covalent monoadduct of neocarzinostatin chromophore at a DNA bulge.
    Kappen LS; Goldberg IH
    Biochemistry; 1997 Dec; 36(48):14861-7. PubMed ID: 9398208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neocarzinostatin chromophore. Assignment of spectral properties and structural requirements for binding to DNA.
    Napier MA; Goldberg IH
    Mol Pharmacol; 1983 Mar; 23(2):500-10. PubMed ID: 6220205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.