These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15318799)

  • 1. A hydrogel system for stimulus-responsive, oxygen-sensitive in situ gelation.
    Goessl A; Tirelli N; Hubbell JA
    J Biomater Sci Polym Ed; 2004; 15(7):895-904. PubMed ID: 15318799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling network structure in degradable thiol-acrylate biomaterials to tune mass loss behavior.
    Rydholm AE; Reddy SK; Anseth KS; Bowman CN
    Biomacromolecules; 2006 Oct; 7(10):2827-36. PubMed ID: 17025359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photopolymerizable thiol-acrylate maleiated hyaluronic acid/thiol-terminated poly(ethylene glycol) hydrogels as potential in-situ formable scaffolds.
    Zhang C; Dong Q; Liang K; Zhou D; Yang H; Liu X; Xu W; Zhou Y; Xiao P
    Int J Biol Macromol; 2018 Nov; 119():270-277. PubMed ID: 30055272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of a novel degradable phosphate-containing hydrogel.
    Wang DA; Williams CG; Li Q; Sharma B; Elisseeff JH
    Biomaterials; 2003 Oct; 24(22):3969-80. PubMed ID: 12834592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO.
    Ding C; Zhao L; Liu F; Cheng J; Gu J; Dan S; Liu C; Qu X; Yang Z
    Biomacromolecules; 2010 Apr; 11(4):1043-51. PubMed ID: 20337439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel hydrogels as supports for in vitro cell growth: poly(ethylene glycol)- and gelatine-based (meth)acrylamidopeptide macromonomers.
    Zimmermann J; Bittner K; Stark B; Mülhaupt R
    Biomaterials; 2002 May; 23(10):2127-34. PubMed ID: 11962653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "One-step" preparation of thiol-ene clickable PEG-based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel.
    Dong Y; Saeed AO; Hassan W; Keigher C; Zheng Y; Tai H; Pandit A; Wang W
    Macromol Rapid Commun; 2012 Jan; 33(2):120-6. PubMed ID: 22139810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailorable cell culture platforms from enzymatically cross-linked multifunctional poly(ethylene glycol)-based hydrogels.
    Menzies DJ; Cameron A; Munro T; Wolvetang E; Grøndahl L; Cooper-White JJ
    Biomacromolecules; 2013 Feb; 14(2):413-23. PubMed ID: 23259935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol/acrylate-modified PEO-PPO-PEO triblocks used as reactive and thermosensitive copolymers.
    Niu G; Zhang H; Song L; Cui X; Cao H; Zheng Y; Zhu S; Yang Z; Yang H
    Biomacromolecules; 2008 Oct; 9(10):2621-8. PubMed ID: 18710282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injectable supramolecular hydrogel formed from α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron for sustained MMP-9 shRNA plasmid delivery.
    Lin Q; Yang Y; Hu Q; Guo Z; Liu T; Xu J; Wu J; Kirk TB; Ma D; Xue W
    Acta Biomater; 2017 Feb; 49():456-471. PubMed ID: 27915016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine.
    Shih H; Liu HY; Lin CC
    Biomater Sci; 2017 Feb; 5(3):589-599. PubMed ID: 28174779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and on-demand gelation of multifunctional poly(ethylene glycol)-based polymers.
    Sokolovskaya E; Barner L; Bräse S; Lahann J
    Macromol Rapid Commun; 2014 Apr; 35(8):780-6. PubMed ID: 24522984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small Physical Cross-Linker Facilitates Hyaluronan Hydrogels.
    Erikci S; Mundinger P; Boehm H
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32933012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully degradable hydrophilic polyals for protein modification.
    Yurkovetskiy A; Choi S; Hiller A; Yin M; McCusker C; Syed S; Fischman AJ; Papisov MI
    Biomacromolecules; 2005; 6(5):2648-58. PubMed ID: 16153103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of PEG-carboxymethylcellulose hydrogel by thiol-norbornene photo-click chemistry.
    Lee S; Park YH; Ki CS
    Int J Biol Macromol; 2016 Feb; 83():1-8. PubMed ID: 26616448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement.
    Rödel M; Teßmar J; Groll J; Gbureck U
    Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell viability of chitosan-containing semi-interpenetrated hydrogels based on PCL-PEG-PCL diacrylate macromer.
    Zhu AP; Chan-Park MB
    J Biomater Sci Polym Ed; 2005; 16(3):301-16. PubMed ID: 15850286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ crosslinking of a biomimetic peptide-PEG hydrogel via thermally triggered activation of factor XIII.
    Sanborn TJ; Messersmith PB; Barron AE
    Biomaterials; 2002 Jul; 23(13):2703-10. PubMed ID: 12059019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse thermal organogelation of poly(ethylene glycol)-polypeptide diblock copolymers in chloroform.
    Choi YY; Jeong Y; Joo MK; Jeong B
    Macromol Biosci; 2009 Sep; 9(9):869-74. PubMed ID: 19384979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disulfide-crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth.
    Shu XZ; Liu Y; Palumbo F; Prestwich GD
    Biomaterials; 2003 Sep; 24(21):3825-34. PubMed ID: 12818555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.