BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 15318800)

  • 1. Tethered protein/peptide-surface-modified hydrogels.
    Bi J; Downs JC; Jacob JT
    J Biomater Sci Polym Ed; 2004; 15(7):905-16. PubMed ID: 15318800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corneal epithelial cell growth over tethered-protein/peptide surface-modified hydrogels.
    Jacob JT; Rochefort JR; Bi J; Gebhardt BM
    J Biomed Mater Res B Appl Biomater; 2005 Jan; 72(1):198-205. PubMed ID: 15486971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corneal epithelial adhesion strength to tethered-protein/peptide modified hydrogel surfaces.
    Wallace C; Jacob JT; Stoltz A; Bi J; Bundy K
    J Biomed Mater Res A; 2005 Jan; 72(1):19-24. PubMed ID: 15534866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell viability of chitosan-containing semi-interpenetrated hydrogels based on PCL-PEG-PCL diacrylate macromer.
    Zhu AP; Chan-Park MB
    J Biomater Sci Polym Ed; 2005; 16(3):301-16. PubMed ID: 15850286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical stabilization of proteolytically degradable polyethylene glycol dimethacrylate hydrogels through peptide interaction.
    Lim HJ; Khan Z; Lu X; Perera TH; Wilems TS; Ravivarapu KT; Smith Callahan LA
    Acta Biomater; 2018 Apr; 71():271-278. PubMed ID: 29526829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel hydrogels as supports for in vitro cell growth: poly(ethylene glycol)- and gelatine-based (meth)acrylamidopeptide macromonomers.
    Zimmermann J; Bittner K; Stark B; Mülhaupt R
    Biomaterials; 2002 May; 23(10):2127-34. PubMed ID: 11962653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PHEMA hydrogels modified through the grafting of phosphate groups by ATRP support the attachment and growth of human corneal epithelial cells.
    Zainuddin ; Barnard Z; Keen I; Hill DJ; Chirila TV; Harkin DG
    J Biomater Appl; 2008 Sep; 23(2):147-68. PubMed ID: 18632768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modification of model hydrogel contact lenses with hyaluronic acid via thiol-ene "click" chemistry for enhancing surface characteristics.
    Korogiannaki M; Zhang J; Sheardown H
    J Biomater Appl; 2017 Oct; 32(4):446-462. PubMed ID: 28992804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface modification of hydrogels based on poly(2-hydroxyethyl methacrylate) with extracellular matrix proteins.
    Brynda E; Houska M; Kysilka J; Prádný M; Lesný P; Jendelová P; Michálek J; Syková E
    J Mater Sci Mater Med; 2009 Apr; 20(4):909-15. PubMed ID: 19034625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers.
    Wagner VE; Koberstein JT; Bryers JD
    Biomaterials; 2004 May; 25(12):2247-63. PubMed ID: 14741590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Fluorination Modification and Anti-Biofouling Study of a pHEMA Hydrogel.
    Yang X; Cui M; Zhou J; Zhang L; Zhou H; Luo Z; Zhou L; Hu H
    ACS Appl Bio Mater; 2021 Jan; 4(1):523-532. PubMed ID: 35014303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotinylated biodegradable nanotemplated hydrogel networks for cell interactive applications.
    Clapper JD; Pearce ME; Guymon CA; Salem AK
    Biomacromolecules; 2008 Apr; 9(4):1188-94. PubMed ID: 18307307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grafting of cross-linked hydrogel networks to titanium surfaces.
    Muir BV; Myung D; Knoll W; Frank CW
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):958-66. PubMed ID: 24364560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein diffusion characteristics in the hydrogels of poly(ethylene glycol) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA).
    Wu J; Xiao Z; He C; Zhu J; Ma G; Wang G; Zhang H; Xiao J; Chen S
    Acta Biomater; 2016 Aug; 40():172-181. PubMed ID: 27142255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of infection-resistant antibiotics-releasing hydrogels rods of poly[hydroxyethyl methacrylate-co-(poly(ethylene glycol)-methacrylate]: biomedical application in a novel rabbit penile prosthesis model.
    Arica MY; Tuğlu D; Başar MM; Kiliç D; Bayramoğlu G; Batislam E
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):18-28. PubMed ID: 18098187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imparting antifouling properties of poly(2-hydroxyethyl methacrylate) hydrogels by grafting poly(oligoethylene glycol methyl ether acrylate).
    Bozukova D; Pagnoulle C; De Pauw-Gillet MC; Ruth N; Jérôme R; Jérôme C
    Langmuir; 2008 Jun; 24(13):6649-58. PubMed ID: 18503285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization, and in vitro evaluation of a hydrogel-based corneal onlay.
    Oelker AM; Grinstaff MW
    IEEE Trans Nanobioscience; 2012 Mar; 11(1):37-45. PubMed ID: 21908258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling modulus and morphology of hydrogel tubes through surface modification.
    Enescu C; Shoichet MS
    J Biomater Sci Polym Ed; 2004; 15(2):215-27. PubMed ID: 15109099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement.
    Rödel M; Teßmar J; Groll J; Gbureck U
    Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological and topographic effects on calcification tendency of pHEMA hydrogels.
    Lou X; Vijayasekaran S; Sugiharti R; Robertson T
    Biomaterials; 2005 Oct; 26(29):5808-17. PubMed ID: 15949546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.