BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15318810)

  • 1. GAPDH enhances group II intron splicing in vitro.
    Böck-Taferner P; Wank H
    Biol Chem; 2004 Jul; 385(7):615-21. PubMed ID: 15318810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of DEAD box protein pMSS116 promotes ATP-dependent splicing of a yeast group II intron in vitro.
    Niemer I; Schmelzer C; Börner GV
    Nucleic Acids Res; 1995 Aug; 23(15):2966-72. PubMed ID: 7659519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA.
    Geese WJ; Waring RB
    J Mol Biol; 2001 May; 308(4):609-22. PubMed ID: 11350164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A DEAD protein that activates intron self-splicing without unwinding RNA.
    Solem A; Zingler N; Pyle AM
    Mol Cell; 2006 Nov; 24(4):611-7. PubMed ID: 17188036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions.
    Hwang NR; Yim SH; Kim YM; Jeong J; Song EJ; Lee Y; Lee JH; Choi S; Lee KJ
    Biochem J; 2009 Sep; 423(2):253-64. PubMed ID: 19650766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple tertiary interactions involving domain II of group II self-splicing introns.
    Costa M; Déme E; Jacquier A; Michel F
    J Mol Biol; 1997 Apr; 267(3):520-36. PubMed ID: 9126835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of hammerhead ribozyme catalysis by glyceraldehyde-3-phosphate dehydrogenase.
    Sioud M; Jespersen L
    J Mol Biol; 1996 Apr; 257(4):775-89. PubMed ID: 8636981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific interaction between the hepatitis delta virus RNA and glyceraldehyde 3-phosphate dehydrogenase: an enhancement on ribozyme catalysis.
    Lin SS; Chang SC; Wang YH; Sun CY; Chang MF
    Virology; 2000 May; 271(1):46-57. PubMed ID: 10814569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppressors of cis-acting splicing-deficient mutations that affect the ribozyme core of a group II intron.
    Robineau S; Bergantino E; Carignani G; Michel F; Netter P
    J Mol Biol; 1997 Apr; 267(3):537-47. PubMed ID: 9126836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity.
    Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM
    J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The receptor for branch-site docking within a group II intron active site.
    Hamill S; Pyle AM
    Mol Cell; 2006 Sep; 23(6):831-40. PubMed ID: 16973435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic screening of nuclear encoded proteins involved in the splicing metabolism of group II introns in yeast mitochondria.
    Luban C; Beutel M; Stahl U; Schmidt U
    Gene; 2005 Jul; 354():72-9. PubMed ID: 15908144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of oncogenic transcription factor hTAF(II)68-TEC activity by human glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
    Kim S; Lee J; Kim J
    Biochem J; 2007 Jun; 404(2):197-206. PubMed ID: 17302560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on the complexes between human erythrocyte enzymes participating in the conversions of 1,3-diphosphoglycerate.
    Fokina KV; Dainyak MB; Nagradova NK; Muronetz VI
    Arch Biochem Biophys; 1997 Sep; 345(2):185-92. PubMed ID: 9308888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of deletions at structural domains of group II intron bI1 on self-splicing in vitro.
    Bachl J; Schmelzer C
    J Mol Biol; 1990 Mar; 212(1):113-25. PubMed ID: 2319592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational analysis of functional domains in Mrs2p, the mitochondrial Mg2+ channel protein of Saccharomyces cerevisiae.
    Weghuber J; Dieterich F; Froschauer EM; Svidovà S; Schweyen RJ
    FEBS J; 2006 Mar; 273(6):1198-209. PubMed ID: 16519685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA.
    Paukstelis PJ; Chen JH; Chase E; Lambowitz AM; Golden BL
    Nature; 2008 Jan; 451(7174):94-7. PubMed ID: 18172503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single active-site region for a group II intron.
    de Lencastre A; Hamill S; Pyle AM
    Nat Struct Mol Biol; 2005 Jul; 12(7):626-7. PubMed ID: 15980867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilized glyceraldehyde-3-phosphate dehydrogenase forms a complex with phosphoglycerate kinase.
    Ashmarina LI; Muronetz VI; Nagradova NK
    Biochem Int; 1984 Oct; 9(4):511-21. PubMed ID: 6393989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and sequencing of the genes encoding glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase (gap operon) from mesophilic Bacillus megaterium: comparison with corresponding sequences from thermophilic Bacillus stearothermophilus.
    Schläpfer BS; Zuber H
    Gene; 1992 Dec; 122(1):53-62. PubMed ID: 1452037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.