These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 15318999)
1. Polyethylene glycol improves function and reduces oxidative stress in synaptosomal preparations following spinal cord injury. Luo J; Borgens R; Shi R J Neurotrauma; 2004 Aug; 21(8):994-1007. PubMed ID: 15318999 [TBL] [Abstract][Full Text] [Related]
3. Diffusive oxidative stress following acute spinal cord injury in guinea pigs and its inhibition by polyethylene glycol. Luo J; Shi R Neurosci Lett; 2004 Apr; 359(3):167-70. PubMed ID: 15050690 [TBL] [Abstract][Full Text] [Related]
4. Polyethylene glycol enhances axolemmal resealing following transection in cultured cells and in ex vivo spinal cord. Nehrt A; Hamann K; Ouyang H; Shi R J Neurotrauma; 2010 Jan; 27(1):151-61. PubMed ID: 19691421 [TBL] [Abstract][Full Text] [Related]
5. Polyethylene glycol inhibits apoptotic cell death following traumatic spinal cord injury. Luo J; Shi R Brain Res; 2007 Jun; 1155():10-6. PubMed ID: 17512912 [TBL] [Abstract][Full Text] [Related]
6. Effect of combined treatment with melatonin and methylprednisolone on neurological recovery after experimental spinal cord injury. Cayli SR; Kocak A; Yilmaz U; Tekiner A; Erbil M; Ozturk C; Batcioglu K; Yologlu S Eur Spine J; 2004 Dec; 13(8):724-32. PubMed ID: 15232723 [TBL] [Abstract][Full Text] [Related]
7. Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol. Shi R; Borgens RB J Neurocytol; 2000 Sep; 29(9):633-43. PubMed ID: 11353287 [TBL] [Abstract][Full Text] [Related]
8. Rapid recovery from spinal cord injury after subcutaneously administered polyethylene glycol. Borgens RB; Bohnert D J Neurosci Res; 2001 Dec; 66(6):1179-86. PubMed ID: 11746451 [TBL] [Abstract][Full Text] [Related]
10. Ghrelin alleviates spinal cord injury in rats via its anti-inflammatory effects. Erşahın M; Toklu HZ; Erzık C; Akakin D; Tetık S; Sener G; Yeğen BC Turk Neurosurg; 2011; 21(4):599-605. PubMed ID: 22194122 [TBL] [Abstract][Full Text] [Related]
11. Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury. Xiong Y; Hall ED Exp Neurol; 2009 Mar; 216(1):105-14. PubMed ID: 19111721 [TBL] [Abstract][Full Text] [Related]
12. Polyethylene glycol repairs membrane damage and enhances functional recovery: a tissue engineering approach to spinal cord injury. Shi R Neurosci Bull; 2013 Aug; 29(4):460-6. PubMed ID: 23893430 [TBL] [Abstract][Full Text] [Related]
13. Magnesium in a polyethylene glycol formulation provides neuroprotection after unilateral cervical spinal cord injury. Lee JH; Roy J; Sohn HM; Cheong M; Liu J; Stammers AT; Tetzlaff W; Kwon BK Spine (Phila Pa 1976); 2010 Nov; 35(23):2041-8. PubMed ID: 20938394 [TBL] [Abstract][Full Text] [Related]
14. Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats. Pannu R; Barbosa E; Singh AK; Singh I J Neurosci Res; 2005 Feb; 79(3):340-50. PubMed ID: 15605375 [TBL] [Abstract][Full Text] [Related]
15. Fenretinide promotes functional recovery and tissue protection after spinal cord contusion injury in mice. López-Vales R; Redensek A; Skinner TA; Rathore KI; Ghasemlou N; Wojewodka G; DeSanctis J; Radzioch D; David S J Neurosci; 2010 Mar; 30(9):3220-6. PubMed ID: 20203181 [TBL] [Abstract][Full Text] [Related]
16. Effectiveness of FK506 on lipid peroxidation in the spinal cord following experimental traumatic injury. Kaymaz M; Emmez H; Bukan N; Dursun A; Kurt G; Paşaoğlu H; Paşaoğlu A Spinal Cord; 2005 Jan; 43(1):22-6. PubMed ID: 15111998 [TBL] [Abstract][Full Text] [Related]
17. A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury. Iannotti C; Ping Zhang Y; Shields CB; Han Y; Burke DA; Xu XM Exp Neurol; 2004 Oct; 189(2):317-32. PubMed ID: 15380482 [TBL] [Abstract][Full Text] [Related]