These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 15318999)

  • 1. Polyethylene glycol improves function and reduces oxidative stress in synaptosomal preparations following spinal cord injury.
    Luo J; Borgens R; Shi R
    J Neurotrauma; 2004 Aug; 21(8):994-1007. PubMed ID: 15318999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional silica nanoparticle-mediated neuronal membrane sealing following traumatic spinal cord injury.
    Cho Y; Shi R; Ivanisevic A; Borgens RB
    J Neurosci Res; 2010 May; 88(7):1433-44. PubMed ID: 19998478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusive oxidative stress following acute spinal cord injury in guinea pigs and its inhibition by polyethylene glycol.
    Luo J; Shi R
    Neurosci Lett; 2004 Apr; 359(3):167-70. PubMed ID: 15050690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyethylene glycol enhances axolemmal resealing following transection in cultured cells and in ex vivo spinal cord.
    Nehrt A; Hamann K; Ouyang H; Shi R
    J Neurotrauma; 2010 Jan; 27(1):151-61. PubMed ID: 19691421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyethylene glycol inhibits apoptotic cell death following traumatic spinal cord injury.
    Luo J; Shi R
    Brain Res; 2007 Jun; 1155():10-6. PubMed ID: 17512912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of combined treatment with melatonin and methylprednisolone on neurological recovery after experimental spinal cord injury.
    Cayli SR; Kocak A; Yilmaz U; Tekiner A; Erbil M; Ozturk C; Batcioglu K; Yologlu S
    Eur Spine J; 2004 Dec; 13(8):724-32. PubMed ID: 15232723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol.
    Shi R; Borgens RB
    J Neurocytol; 2000 Sep; 29(9):633-43. PubMed ID: 11353287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid recovery from spinal cord injury after subcutaneously administered polyethylene glycol.
    Borgens RB; Bohnert D
    J Neurosci Res; 2001 Dec; 66(6):1179-86. PubMed ID: 11746451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury.
    Baptiste DC; Austin JW; Zhao W; Nahirny A; Sugita S; Fehlings MG
    J Neuropathol Exp Neurol; 2009 Jun; 68(6):661-76. PubMed ID: 19458542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ghrelin alleviates spinal cord injury in rats via its anti-inflammatory effects.
    Erşahın M; Toklu HZ; Erzık C; Akakin D; Tetık S; Sener G; Yeğen BC
    Turk Neurosurg; 2011; 21(4):599-605. PubMed ID: 22194122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury.
    Xiong Y; Hall ED
    Exp Neurol; 2009 Mar; 216(1):105-14. PubMed ID: 19111721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyethylene glycol repairs membrane damage and enhances functional recovery: a tissue engineering approach to spinal cord injury.
    Shi R
    Neurosci Bull; 2013 Aug; 29(4):460-6. PubMed ID: 23893430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnesium in a polyethylene glycol formulation provides neuroprotection after unilateral cervical spinal cord injury.
    Lee JH; Roy J; Sohn HM; Cheong M; Liu J; Stammers AT; Tetzlaff W; Kwon BK
    Spine (Phila Pa 1976); 2010 Nov; 35(23):2041-8. PubMed ID: 20938394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats.
    Pannu R; Barbosa E; Singh AK; Singh I
    J Neurosci Res; 2005 Feb; 79(3):340-50. PubMed ID: 15605375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fenretinide promotes functional recovery and tissue protection after spinal cord contusion injury in mice.
    López-Vales R; Redensek A; Skinner TA; Rathore KI; Ghasemlou N; Wojewodka G; DeSanctis J; Radzioch D; David S
    J Neurosci; 2010 Mar; 30(9):3220-6. PubMed ID: 20203181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of FK506 on lipid peroxidation in the spinal cord following experimental traumatic injury.
    Kaymaz M; Emmez H; Bukan N; Dursun A; Kurt G; Paşaoğlu H; Paşaoğlu A
    Spinal Cord; 2005 Jan; 43(1):22-6. PubMed ID: 15111998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury.
    Iannotti C; Ping Zhang Y; Shields CB; Han Y; Burke DA; Xu XM
    Exp Neurol; 2004 Oct; 189(2):317-32. PubMed ID: 15380482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyethylene glycol protects injured neuronal mitochondria.
    Chen H; Quick E; Leung G; Hamann K; Fu Y; Cheng JX; Shi R
    Pathobiology; 2009 May; 76(3):117-28. PubMed ID: 19468251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury.
    Luo J; Borgens R; Shi R
    J Neurochem; 2002 Oct; 83(2):471-80. PubMed ID: 12423257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol.
    Borgens RB; Shi R
    FASEB J; 2000 Jan; 14(1):27-35. PubMed ID: 10627277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.