BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15319219)

  • 1. L-Arginine uptake affects nitric oxide production and blood flow in the renal medulla.
    Kakoki M; Kim HS; Arendshorst WJ; Mattson DL
    Am J Physiol Regul Integr Comp Physiol; 2004 Dec; 287(6):R1478-85. PubMed ID: 15319219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cationic amino acid transport in the renal medulla and blood pressure regulation.
    Kakoki M; Wang W; Mattson DL
    Hypertension; 2002 Feb; 39(2):287-92. PubMed ID: 11847199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation.
    Zou AP; Wu F; Cowley AW
    Hypertension; 1998 Jan; 31(1 Pt 2):271-6. PubMed ID: 9453315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of nitric oxide synthase 1 on blood flow and interstitial nitric oxide in the kidney.
    Kakoki M; Zou AP; Mattson DL
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R91-7. PubMed ID: 11404282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.
    Persson P; Fasching A; Teerlink T; Hansell P; Palm F
    Am J Physiol Renal Physiol; 2017 Feb; 312(2):F278-F283. PubMed ID: 27927650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. alpha(2)-adrenergic receptor-mediated increase in NO production buffers renal medullary vasoconstriction.
    Zou AP; Cowley AW
    Am J Physiol Regul Integr Comp Physiol; 2000 Sep; 279(3):R769-77. PubMed ID: 10956233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chronic renal medullary nitric oxide inhibition on blood pressure.
    Mattson DL; Lu S; Nakanishi K; Papanek PE; Cowley AW
    Am J Physiol; 1994 May; 266(5 Pt 2):H1918-26. PubMed ID: 8203591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of L-arginine transporters in rat renal inner medullary collecting duct.
    Wu F; Cholewa B; Mattson DL
    Am J Physiol Regul Integr Comp Physiol; 2000 Jun; 278(6):R1506-12. PubMed ID: 10848517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide in the renal medulla protects from vasopressin-induced hypertension.
    Szentiványi M; Park F; Maeda CY; Cowley AW
    Hypertension; 2000 Mar; 35(3):740-5. PubMed ID: 10720588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginine vasopressin-mediated stimulation of nitric oxide within the rat renal medulla.
    Park F; Zou AP; Cowley AW
    Hypertension; 1998 Nov; 32(5):896-901. PubMed ID: 9822450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal intramedullary infusion of L-arginine prevents reduction of medullary blood flow and hypertension in Dahl salt-sensitive rats.
    Miyata N; Cowley AW
    Hypertension; 1999 Jan; 33(1 Pt 2):446-50. PubMed ID: 9931145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal medullary nitric oxide deficit of Dahl S rats enhances hypertensive actions of angiotensin II.
    Szentiványi M; Zou AP; Mattson DL; Soares P; Moreno C; Roman RJ; Cowley AW
    Am J Physiol Regul Integr Comp Physiol; 2002 Jul; 283(1):R266-72. PubMed ID: 12069953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of dietary NaCl on L-arginine transport in the renal medulla.
    Zewde T; Wu F; Mattson DL
    Am J Physiol Regul Integr Comp Physiol; 2004 Jan; 286(1):R89-93. PubMed ID: 14512271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and actions of heme oxygenase in the renal medulla of rats.
    Zou AP; Billington H; Su N; Cowley AW
    Hypertension; 2000 Jan; 35(1 Pt 2):342-7. PubMed ID: 10642322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of L-arginine uptake mechanisms in renal blood flow responses to angiotensin II in rats.
    Rajapakse NW; Mattson DL
    Acta Physiol (Oxf); 2011 Nov; 203(3):391-400. PubMed ID: 21649863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of the renal medullary circulation by vasopressin V1 and V2 receptors in the rat.
    Cowley AW
    Exp Physiol; 2000 Mar; 85 Spec No():223S-231S. PubMed ID: 10795926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local renal medullary L-NAME infusion enhances the effect of long-term angiotensin II treatment.
    Szentiványi M; Maeda CY; Cowley AW
    Hypertension; 1999 Jan; 33(1 Pt 2):440-5. PubMed ID: 9931144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.