These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15319811)

  • 1. Effect of D-arginine on antinociception induced by kyotorphin, Tyr-cav, L-cav and Tyr(Cl2)-cav in rats.
    Bocheva A
    Methods Find Exp Clin Pharmacol; 2004 Jun; 26(5):335-8. PubMed ID: 15319811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of kyotorphin and analogues on nociception and pentylenetetrazole seizures.
    Bocheva AI; Dzambazova-Maximova EB
    Folia Med (Plovdiv); 2004; 46(1):40-4. PubMed ID: 15362813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of nitric oxide in the nociception of kyotorphin, TYR-CAV and MIF-s analogues in the rat spinal cord.
    Bocheva A; Lazarova M
    Methods Find Exp Clin Pharmacol; 2003 Mar; 25(2):91-5. PubMed ID: 12731454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-arginine exerts a dual role in nociceptive processing in the brain: involvement of the kyotorphin-Met-enkephalin pathway and NO-cyclic GMP pathway.
    Kawabata A; Umeda N; Takagi H
    Br J Pharmacol; 1993 May; 109(1):73-9. PubMed ID: 8388303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the antinociceptive effects of intracerebroventricular injection of kyotorphin, cyclo (N-methyl-Tyr-Arg) and Met-enkephalin in mice.
    Sakurada T; Sakurada S; Watanabe S; Kawamura S; Sato T; Kisara K; Akutsu Y; Sasaki Y; Suzuki K
    Neuropharmacology; 1984 Jan; 23(1):7-12. PubMed ID: 6717754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of D-kyotorphin on nociception and NADPH-d neurons in rat's periaqueductal gray after immobilization stress.
    Dzambazova EB; Landzhov BV; Bocheva AI; Bozhilova-Pastirova AA
    Amino Acids; 2011 Oct; 41(4):937-44. PubMed ID: 21046177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of antinociception induced by supraspinally administered L-arginine and kyotorphin.
    Kawabata A; Manabe S; Takagi H
    Br J Pharmacol; 1994 Jul; 112(3):817-22. PubMed ID: 7921607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L-leucyl-L-arginine, naltrindole and D-arginine block antinociception elicited by L-arginine in mice with carrageenin-induced hyperalgesia.
    Kawabata A; Nishimura Y; Takagi H
    Br J Pharmacol; 1992 Dec; 107(4):1096-101. PubMed ID: 1467831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A characterization of kyotorphin (Tyr-Arg)-induced antinociception.
    Vaught JL; Chipkin RE
    Eur J Pharmacol; 1982 Apr; 79(3-4):167-73. PubMed ID: 7047176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blockade of analgesic effects following systemic administration of N-methyl-kyotorphin, NMYR and arginine in mice deficient of preproenkephalin or proopiomelanocortin gene.
    Neyama H; Hamada Y; Tsukahara R; Narita M; Tsukamoto K; Ueda H
    Peptides; 2018 Sep; 107():10-16. PubMed ID: 30040980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Tyr-W-MIF-1 analog containing D-Pro2 discriminates among antinociception in mice mediated by different classes of mu-opioid receptors.
    Nakayama D; Watanabe C; Watanabe H; Mizoguchi H; Sakurada T; Sakurada S
    Eur J Pharmacol; 2007 Jun; 563(1-3):109-16. PubMed ID: 17343845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of central injection of kyotorphin and L-arginine on oxytocin and vasopressin release and blood pressure in conscious rats.
    Summy-Long JY; Bui V; Gestl S; Koehler-Stec E; Liu H; Terrell ML; Kadekaro M
    Brain Res Bull; 1998; 45(4):395-403. PubMed ID: 9527014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kyotorphin synthetase activity in rat adrenal glands and spinal cord.
    Kawabata A; Muguruma H; Tanaka M; Takagi H
    Peptides; 1996; 17(3):407-11. PubMed ID: 8735966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kyotorphin (L-tyrosyl-L-arginine) as a possible substrate for inducible nitric oxide synthase in rat glial cells.
    Arima T; Kitamura Y; Nishiya T; Takagi H; Nomura Y
    Neurosci Lett; 1996 Jul; 212(1):1-4. PubMed ID: 8823748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of diphenylhydramine on the Tyr-MIF-1 antinociception in rats.
    Bocheva A; Zamfirova R; Pajpanova T; Todorov S; Georgieva M; Golovinsky E
    Arch Physiol Biochem; 1998 Dec; 106(5):378-83. PubMed ID: 10441059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the growth of human pancreatic cancer cells by the arginine antimetabolite L-canavanine.
    Swaffar DS; Ang CY; Desai PB; Rosenthal GA
    Cancer Res; 1994 Dec; 54(23):6045-8. PubMed ID: 7954443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of spinal nitric oxide synthase by N(omega)-nitro-L-arginine blocks the release of Met-enkephalin and antinociception induced by supraspinally administered beta-endorphin in the rat.
    Tseng LF; Wang HQ; Xu JY
    Neuroscience; 1997 May; 78(2):461-7. PubMed ID: 9145802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of nitric oxide synthase enhances antinociception mediated by mu, delta and kappa opioid receptors in acute and prolonged pain in the rat spinal cord.
    Machelska H; Labuz D; Przewłocki R; Przewłocka B
    J Pharmacol Exp Ther; 1997 Aug; 282(2):977-84. PubMed ID: 9262366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The spinal antinociceptive effect of FR140423 is mediated through kyotorphin receptors.
    Ochi T; Motoyama Y; Goto T
    Life Sci; 2000; 66(23):2239-45. PubMed ID: 10855944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [D-Arg]Kyotorphin-induced ipsilateral rotation: evidence for in vivo effects independent of Met-enkephalin release.
    Bean AJ; Vaught JL
    Brain Res; 1984 Nov; 321(2):327-31. PubMed ID: 6498522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.