These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 15320466)

  • 21. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method.
    Tomar V
    J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the dependence of the elasticity and strength of cancellous bone on apparent density.
    Rice JC; Cowin SC; Bowman JA
    J Biomech; 1988; 21(2):155-68. PubMed ID: 3350829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models.
    van Rietbergen B; Weinans H; Huiskes R; Odgaard A
    J Biomech; 1995 Jan; 28(1):69-81. PubMed ID: 7852443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests.
    Ridha H; Thurner PJ
    J Mech Behav Biomed Mater; 2013 Nov; 27():94-106. PubMed ID: 23890577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How to select the elastic modulus for cancellous bone in patient-specific continuum models of the spine.
    Diamant I; Shahar R; Gefen A
    Med Biol Eng Comput; 2005 Jul; 43(4):465-72. PubMed ID: 16255428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress.
    Hollister SJ; Brennan JM; Kikuchi N
    J Biomech; 1994 Apr; 27(4):433-44. PubMed ID: 8188724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trabecular bone modulus-density relationships depend on anatomic site.
    Morgan EF; Bayraktar HH; Keaveny TM
    J Biomech; 2003 Jul; 36(7):897-904. PubMed ID: 12757797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trabecular bone's mechanical properties are affected by its non-uniform mineral distribution.
    van der Linden JC; Birkenhäger-Frenkel DH; Verhaar JA; Weinans H
    J Biomech; 2001 Dec; 34(12):1573-80. PubMed ID: 11716859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical properties across trabeculae from the proximal femur of normal and ovariectomised sheep.
    Brennan O; Kennedy OD; Lee TC; Rackard SM; O'Brien FJ
    J Biomech; 2009 Mar; 42(4):498-503. PubMed ID: 19171344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micro-cantilever bending for elastic modulus measurements of a single trabecula in cancellous bone.
    Yamada S; Tadano S; Fukasawa K
    J Biomech; 2016 Dec; 49(16):4124-4127. PubMed ID: 27793405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone - An experimental and finite element study.
    Ojanen X; Tanska P; Malo MKH; Isaksson H; Väänänen SP; Koistinen AP; Grassi L; Magnusson SP; Ribel-Madsen SM; Korhonen RK; Jurvelin JS; Töyräs J
    J Biomech; 2017 Dec; 65():96-105. PubMed ID: 29108850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of boundary conditions on computed apparent elastic properties of cancellous bone.
    Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specimen diameter and "side artifacts" in cancellous bone evaluated using end-constrained elastic tension.
    Lievers WB; Petryshyn AC; Poljsak AS; Waldman SD; Pilkey AK
    Bone; 2010 Aug; 47(2):371-7. PubMed ID: 20380901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of cortical shell and trabecular fabric in finite element analysis of the human vertebral body.
    Chevalier Y; Pahr D; Zysset PK
    J Biomech Eng; 2009 Nov; 131(11):111003. PubMed ID: 20353254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental method for the measurement of the elastic modulus of trabecular bone tissue.
    Mente PL; Lewis JL
    J Orthop Res; 1989; 7(3):456-61. PubMed ID: 2703939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A method for patient-specific evaluation of vertebral cancellous bone strength: in vitro validation.
    Diamant I; Shahar R; Masharawi Y; Gefen A
    Clin Biomech (Bristol, Avon); 2007 Mar; 22(3):282-91. PubMed ID: 17134802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Orthotropic properties of cancellous bone modelled as parameterized cellular material.
    Kowalczyk P
    Comput Methods Biomech Biomed Engin; 2006 Jun; 9(3):135-47. PubMed ID: 16880164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.