These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1532129)

  • 1. Effects of pH on the binding of hematoporphyrin derivative to monolayer and bilayer membranes.
    Rich MR; Ferraro G; Brody SS
    Biochim Biophys Acta; 1992 Mar; 1104(2):269-72. PubMed ID: 1532129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of membrane physical parameters on hematoporphyrin-derivative binding to liposomes: a spectroscopic study.
    Gross E; Malik Z; Ehrenberg B
    J Membr Biol; 1987; 97(3):215-21. PubMed ID: 2957505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane photosensitization by hematoporphyrin and hematoporphyrin derivative.
    Grossweiner LI
    Prog Clin Biol Res; 1984; 170():391-404. PubMed ID: 6241687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosensitization of liposomal membranes by hematoporphyrin derivative.
    Goyal GC; Blum A; Grossweiner LI
    Cancer Res; 1983 Dec; 43(12 Pt 1):5826-30. PubMed ID: 6227382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of pH on the topography of porphyrins in lipid membranes.
    Bronshtein I; Smith KM; Ehrenberg B
    Photochem Photobiol; 2005; 81(2):446-51. PubMed ID: 15581389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of hematoporphyrin and hematoporphyrin derivative equilibria in heterogeneous systems. Porphyrin-liposome binding and porphyrin aqueous dimerization.
    Margalit R; Cohen S
    Biochim Biophys Acta; 1983 Dec; 736(2):163-70. PubMed ID: 6228253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of hematoporphyrin derivative to membranes. Expression of porphyrin heterogeneity and effects of cholesterol studied in large unilamellar liposomes.
    Cohen S; Margalit R
    Biochim Biophys Acta; 1985 Mar; 813(2):307-12. PubMed ID: 3155968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early events in photodynamic therapy: chemical and physical changes in a POPC:cholesterol bilayer due to hematoporphyrin IX-mediated photosensitization.
    Santos A; Rodrigues AM; Sobral AJ; Monsanto PV; Vaz WL; Moreno MJ
    Photochem Photobiol; 2009; 85(6):1409-17. PubMed ID: 19706142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liposomes as models to study the distribution of porphyrins in cell membranes.
    Ricchelli F; Jori G; Gobbo S; Tronchin M
    Biochim Biophys Acta; 1991 May; 1065(1):42-8. PubMed ID: 2043650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dipole potential as a driving force for the membrane insertion of polyacrylic acid in slightly acidic milieu.
    Berkovich AK; Lukashev EP; Melik-Nubarov NS
    Biochim Biophys Acta; 2012 Mar; 1818(3):375-83. PubMed ID: 21703225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The partition and distribution of porphyrins in liposomal membranes. A spectroscopic study.
    Gross E; Ehrenberg B
    Biochim Biophys Acta; 1989 Jul; 983(1):118-22. PubMed ID: 2527063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and finite element analysis of tethered bilayer lipid structures.
    Kwak KJ; Valincius G; Liao WC; Hu X; Wen X; Lee A; Yu B; Vanderah DJ; Lu W; Lee LJ
    Langmuir; 2010 Dec; 26(23):18199-208. PubMed ID: 20977245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The time-dependent behaviour of hematoporphyrin-derivative in saline: a study of spectral modifications.
    Bottiroli G; Freitas I; Docchio F; Ramponi R; Sacchi CA
    Chem Biol Interact; 1984 Apr; 49(1-2):1-11. PubMed ID: 6233016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local anesthetics and pressure: a comparison of dibucaine binding to lipid monolayers and bilayers.
    Seelig A
    Biochim Biophys Acta; 1987 May; 899(2):196-204. PubMed ID: 3580365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imidazolium-Based Lipid Analogues and Their Interaction with Phosphatidylcholine Membranes.
    Wang D; de Jong DH; Rühling A; Lesch V; Shimizu K; Wulff S; Heuer A; Glorius F; Galla HJ
    Langmuir; 2016 Dec; 32(48):12579-12592. PubMed ID: 27934518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of hematoporphyrin with lipid membranes.
    Stępniewski M; Kepczynski M; Jamróz D; Nowakowska M; Rissanen S; Vattulainen I; Róg T
    J Phys Chem B; 2012 Apr; 116(16):4889-97. PubMed ID: 22482736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of incorporation of porphyrins into small unilamellar vesicles.
    Vever-Bizet C; Brault D
    Biochim Biophys Acta; 1993 Dec; 1153(2):170-4. PubMed ID: 8274486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic studies of hematoporphyrin-derivative in culture medium.
    Bottiroli G; Docchio F; Freitas I; Ramponi R; Sacchi CA
    Chem Biol Interact; 1984 Jul; 50(2):153-7. PubMed ID: 6235001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion of chlorin-p6 across phosphatidyl choline liposome bilayer probed by second harmonic generation.
    Saini RK; Dube A; Gupta PK; Das K
    J Phys Chem B; 2012 Apr; 116(14):4199-205. PubMed ID: 22414064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphatidylcholine-fatty acid membranes. I. Effects of protonation, salt concentration, temperature and chain-length on the colloidal and phase properties of mixed vesicles, bilayers and nonlamellar structures.
    Cevc G; Seddon JM; Hartung R; Eggert W
    Biochim Biophys Acta; 1988 May; 940(2):219-40. PubMed ID: 2835979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.