These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 1532151)
41. Inducible expression of N-methyl-D-aspartate (NMDA) receptor channels from cloned cDNAs in CHO cells. Uchino S; Kudo Y; Watanabe W; Nakajima-Iijima S; Mishina M Brain Res Mol Brain Res; 1997 Feb; 44(1):1-11. PubMed ID: 9030692 [TBL] [Abstract][Full Text] [Related]
42. Molecular and functional characterization of Xenopus laevis N-methyl-d-aspartate receptors. Schmidt C; Hollmann M Mol Cell Neurosci; 2009 Oct; 42(2):116-27. PubMed ID: 19524674 [TBL] [Abstract][Full Text] [Related]
43. Splice variants of the N-methyl-D-aspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C. Durand GM; Bennett MV; Zukin RS Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6731-5. PubMed ID: 8341692 [TBL] [Abstract][Full Text] [Related]
44. Different structural requirements for functional ion pore transplantation suggest different gating mechanisms of NMDA and kainate receptors. Villmann C; Hoffmann J; Werner M; Kott S; Strutz-Seebohm N; Nilsson T; Hollmann M J Neurochem; 2008 Oct; 107(2):453-65. PubMed ID: 18710418 [TBL] [Abstract][Full Text] [Related]
45. Molecular cloning and characterization of the rat NMDA receptor. Moriyoshi K; Masu M; Ishii T; Shigemoto R; Mizuno N; Nakanishi S Nature; 1991 Nov; 354(6348):31-7. PubMed ID: 1834949 [TBL] [Abstract][Full Text] [Related]
46. Cobalt accumulation in neurons expressing ionotropic excitatory amino acid receptors in young rat spinal cord: morphology and distribution. Nagy I; Woolf CJ; Dray A; Urbán L J Comp Neurol; 1994 Jun; 344(3):321-35. PubMed ID: 8063957 [TBL] [Abstract][Full Text] [Related]
47. Human N-methyl-D-aspartate receptor modulatory subunit hNR2A: cloning and sequencing of the cDNA and primary structure of the protein. Foldes RL; Adams SL; Fantaske RP; Kamboj RK Biochim Biophys Acta; 1994 Aug; 1223(1):155-9. PubMed ID: 8061049 [TBL] [Abstract][Full Text] [Related]
48. Subunit-specific redox modulation of NMDA receptors expressed in Xenopus oocytes. Omerovic A; Chen SJ; Leonard JP; Kelso SR J Recept Signal Transduct Res; 1995 Jul; 15(6):811-27. PubMed ID: 7584513 [TBL] [Abstract][Full Text] [Related]
49. Subunit-specific contribution of pore-forming domains to NMDA receptor channel structure and gating. Sobolevsky AI; Prodromou ML; Yelshansky MV; Wollmuth LP J Gen Physiol; 2007 Jun; 129(6):509-25. PubMed ID: 17504910 [TBL] [Abstract][Full Text] [Related]
50. Comparison of ethanol sensitivity of rat brain kainate, DL-alpha-amino-3-hydroxy-5-methyl-4-isoxalone proprionic acid and N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Dildy-Mayfield JE; Harris RA J Pharmacol Exp Ther; 1992 Aug; 262(2):487-94. PubMed ID: 1380078 [TBL] [Abstract][Full Text] [Related]
51. Xenopus laevis oocytes endogenously express all subunits of the ionotropic glutamate receptor family. Schmidt C; Klein C; Hollmann M J Mol Biol; 2009 Jul; 390(2):182-95. PubMed ID: 19445955 [TBL] [Abstract][Full Text] [Related]