These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 1532151)

  • 41. Inducible expression of N-methyl-D-aspartate (NMDA) receptor channels from cloned cDNAs in CHO cells.
    Uchino S; Kudo Y; Watanabe W; Nakajima-Iijima S; Mishina M
    Brain Res Mol Brain Res; 1997 Feb; 44(1):1-11. PubMed ID: 9030692
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular and functional characterization of Xenopus laevis N-methyl-d-aspartate receptors.
    Schmidt C; Hollmann M
    Mol Cell Neurosci; 2009 Oct; 42(2):116-27. PubMed ID: 19524674
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Splice variants of the N-methyl-D-aspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C.
    Durand GM; Bennett MV; Zukin RS
    Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6731-5. PubMed ID: 8341692
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Different structural requirements for functional ion pore transplantation suggest different gating mechanisms of NMDA and kainate receptors.
    Villmann C; Hoffmann J; Werner M; Kott S; Strutz-Seebohm N; Nilsson T; Hollmann M
    J Neurochem; 2008 Oct; 107(2):453-65. PubMed ID: 18710418
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular cloning and characterization of the rat NMDA receptor.
    Moriyoshi K; Masu M; Ishii T; Shigemoto R; Mizuno N; Nakanishi S
    Nature; 1991 Nov; 354(6348):31-7. PubMed ID: 1834949
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cobalt accumulation in neurons expressing ionotropic excitatory amino acid receptors in young rat spinal cord: morphology and distribution.
    Nagy I; Woolf CJ; Dray A; Urbán L
    J Comp Neurol; 1994 Jun; 344(3):321-35. PubMed ID: 8063957
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human N-methyl-D-aspartate receptor modulatory subunit hNR2A: cloning and sequencing of the cDNA and primary structure of the protein.
    Foldes RL; Adams SL; Fantaske RP; Kamboj RK
    Biochim Biophys Acta; 1994 Aug; 1223(1):155-9. PubMed ID: 8061049
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Subunit-specific redox modulation of NMDA receptors expressed in Xenopus oocytes.
    Omerovic A; Chen SJ; Leonard JP; Kelso SR
    J Recept Signal Transduct Res; 1995 Jul; 15(6):811-27. PubMed ID: 7584513
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Subunit-specific contribution of pore-forming domains to NMDA receptor channel structure and gating.
    Sobolevsky AI; Prodromou ML; Yelshansky MV; Wollmuth LP
    J Gen Physiol; 2007 Jun; 129(6):509-25. PubMed ID: 17504910
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of ethanol sensitivity of rat brain kainate, DL-alpha-amino-3-hydroxy-5-methyl-4-isoxalone proprionic acid and N-methyl-D-aspartate receptors expressed in Xenopus oocytes.
    Dildy-Mayfield JE; Harris RA
    J Pharmacol Exp Ther; 1992 Aug; 262(2):487-94. PubMed ID: 1380078
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Xenopus laevis oocytes endogenously express all subunits of the ionotropic glutamate receptor family.
    Schmidt C; Klein C; Hollmann M
    J Mol Biol; 2009 Jul; 390(2):182-95. PubMed ID: 19445955
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Subtype-selective inhibition of N-methyl-D-aspartate receptors by haloperidol.
    Ilyin VI; Whittemore ER; Guastella J; Weber E; Woodward RM
    Mol Pharmacol; 1996 Dec; 50(6):1541-50. PubMed ID: 8967976
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NS-257, a novel competitive AMPA receptor antagonist, interacts with kainate and NMDA receptors.
    Nijholt I; Blank T; Grafelmann B; Cepok S; Kügler H; Spiess J
    Brain Res; 1999 Mar; 821(2):374-82. PubMed ID: 10064824
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cloning and functional expression of a cDNA encoding the mouse beta 2 subunit of the kainate-selective glutamate receptor channel.
    Morita T; Sakimura K; Kushiya E; Yamazaki M; Meguro H; Araki K; Abe T; Mori KJ; Mishina M
    Brain Res Mol Brain Res; 1992 Jun; 14(1-2):143-6. PubMed ID: 1379666
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Human N-methyl-D-aspartate receptor modulatory subunit hNR3: cloning and sequencing of the cDNA and primary structure of the protein.
    Adams SL; Foldes RL; Kamboj RK
    Biochim Biophys Acta; 1995 Jan; 1260(1):105-8. PubMed ID: 7999784
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury.
    Salter MG; Fern R
    Nature; 2005 Dec; 438(7071):1167-71. PubMed ID: 16372012
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional expression from cloned cDNAs of glutamate receptor species responsive to kainate and quisqualate.
    Sakimura K; Bujo H; Kushiya E; Araki K; Yamazaki M; Yamazaki M; Meguro H; Warashina A; Numa S; Mishina M
    FEBS Lett; 1990 Oct; 272(1-2):73-80. PubMed ID: 1699805
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones.
    Traynelis SF; Cull-Candy SG
    J Physiol; 1991 Feb; 433():727-63. PubMed ID: 1726797
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulated subcellular distribution of the NR1 subunit of the NMDA receptor.
    Ehlers MD; Tingley WG; Huganir RL
    Science; 1995 Sep; 269(5231):1734-7. PubMed ID: 7569904
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuroprotection by tosyl-polyamine derivatives through the inhibition of ionotropic glutamate receptors.
    Masuko T; Namiki R; Nemoto Y; Miyake M; Kizawa Y; Suzuki T; Kashiwagi K; Igarashi K; Kusama T
    J Pharmacol Exp Ther; 2009 Nov; 331(2):522-30. PubMed ID: 19644042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.