These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15321836)

  • 1. Changes in stomatal frequency and size during elongation of Tsuga heterophylla needles.
    Kouwenberg LL; Kürschner WM; Visscher H
    Ann Bot; 2004 Oct; 94(4):561-9. PubMed ID: 15321836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2.
    Kouwenberg LL; McElwain JC; Kürschner WM; Wagner F; Beerling DJ; Mayle FE; Visscher H
    Am J Bot; 2003 Apr; 90(4):610-9. PubMed ID: 21659156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergence of leaf display and photosynthetic characteristics of understory Abies amabilis and Tsuga heterophylla in an old-growth forest in southwestern Washington State, USA.
    Ishii H; Yoshimura K; Mori A
    Tree Physiol; 2009 Aug; 29(8):989-98. PubMed ID: 19525494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended differentiation of veins and stomata is essential for the expansion of large leaves in Rheum rhabarbarum.
    Cardoso AA; Randall JM; Jordan GJ; McAdam SAM
    Am J Bot; 2018 Dec; 105(12):1967-1974. PubMed ID: 30475383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade.
    Carins Murphy MR; Jordan GJ; Brodribb TJ
    Ann Bot; 2016 Nov; 118(6):1127-1138. PubMed ID: 27578763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions?
    Pompelli MF; Martins SC; Celin EF; Ventrella MC; Damatta FM
    Braz J Biol; 2010 Nov; 70(4):1083-8. PubMed ID: 21180918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers.
    Haworth M; Heath J; McElwain JC
    Ann Bot; 2010 Mar; 105(3):411-8. PubMed ID: 20089556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of CO
    Ceulemans R; VAN Praet L; Jiang XN
    New Phytol; 1995 Sep; 131(1):99-107. PubMed ID: 33863170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear aggregations of stomata and epidermal cells in Tradescantia leaves: evidence for their group patterning as a function of the cell cycle.
    Chin J; Wan Y; Smith J; Croxdale J
    Dev Biol; 1995 Mar; 168(1):39-46. PubMed ID: 7883077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal and spatial variation of terpenoids in eastern hemlock (Tsuga canadensis) in relation to feeding by Adelges tsugae.
    Lagalante AF; Lewis N; Montgomery ME; Shields KS
    J Chem Ecol; 2006 Nov; 32(11):2389-403. PubMed ID: 17078000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves.
    Driscoll SP; Prins A; Olmos E; Kunert KJ; Foyer CH
    J Exp Bot; 2006; 57(2):381-90. PubMed ID: 16371401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal and age-related variation in the needle quality of five conifer species.
    Hatcher PE
    Oecologia; 1990 Dec; 85(2):200-212. PubMed ID: 28312556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The three-dimensional construction of leaves is coordinated with water use efficiency in conifers.
    Trueba S; Théroux-Rancourt G; Earles JM; Buckley TN; Love D; Johnson DM; Brodersen C
    New Phytol; 2022 Jan; 233(2):851-861. PubMed ID: 34614205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and Stomatal Function of Douglas Fir Needles Exposed to Climate Change: Elevated CO2 and Temperature.
    Apple ME; Olszyk DM; Ormrod DP; Lewis J; Southworth D; Tingey DT
    Int J Plant Sci; 2000 Jan; 161(1):127-132. PubMed ID: 10648202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating stomatal physiology and morphology: evolution of stomatal control and development of future crops.
    Haworth M; Marino G; Loreto F; Centritto M
    Oecologia; 2021 Dec; 197(4):867-883. PubMed ID: 33515295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Links between environment and stomatal size through evolutionary time in Proteaceae.
    Jordan GJ; Carpenter RJ; Holland BR; Beeton NJ; Woodhams MD; Brodribb TJ
    Proc Biol Sci; 2020 Jan; 287(1919):20192876. PubMed ID: 31992170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers.
    Haworth M; Elliott-Kingston C; McElwain JC
    Oecologia; 2011 Sep; 167(1):11-9. PubMed ID: 21461935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of dwarf mistletoe on the physiology of host Tsuga heterophylla trees as recorded in tree-ring C and O stable isotopes.
    Marias DE; Meinzer FC; Woodruff DR; Shaw DC; Voelker SL; Brooks JR; Lachenbruch B; Falk K; McKay J
    Tree Physiol; 2014 Jun; 34(6):595-607. PubMed ID: 24973917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms.
    Carins Murphy MR; Jordan GJ; Brodribb TJ
    PLoS One; 2017; 12(9):e0185648. PubMed ID: 28953931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic analysis of epidermal cell divisions identifies specific roles for COP10 in Arabidopsis stomatal lineage development.
    Delgado D; Ballesteros I; Torres-Contreras J; Mena M; Fenoll C
    Planta; 2012 Aug; 236(2):447-61. PubMed ID: 22407427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.