These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15322310)

  • 1. Modeling kinematics and dynamics of human arm movements.
    Admiraal MA; Kusters MJ; Gielen SC
    Motor Control; 2004 Jul; 8(3):312-38. PubMed ID: 15322310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics.
    Biess A; Liebermann DG; Flash T
    J Neurosci; 2007 Nov; 27(48):13045-64. PubMed ID: 18045899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can a kinetic optimization criterion predict both arm trajectory and final arm posture?
    Wada Y; Yamanaka K; Soga Y; Tsuyuki K; Kawato M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1197-200. PubMed ID: 17946449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A behavior-based inverse kinematics algorithm to predict arm prehension postures for computer-aided ergonomic evaluation.
    Wang X
    J Biomech; 1999 May; 32(5):453-60. PubMed ID: 10326998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct adaptation patterns between grip dynamics and arm kinematics when the body is upside-down.
    Opsomer L; Crevecoeur F; Thonnard JL; McIntyre J; Lefèvre P
    J Neurophysiol; 2021 Mar; 125(3):862-874. PubMed ID: 33656927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-joint coupling and joint angle synergies of human catching movements.
    Bockemühl T; Troje NF; Dürr V
    Hum Mov Sci; 2010 Feb; 29(1):73-93. PubMed ID: 19945187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moving effortlessly in three dimensions: does Donders' law apply to arm movement?
    Soechting JF; Buneo CA; Herrmann U; Flanders M
    J Neurosci; 1995 Sep; 15(9):6271-80. PubMed ID: 7666209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arm position constraints during pointing and reaching in 3-D space.
    Gielen CC; Vrijenhoek EJ; Flash T; Neggers SF
    J Neurophysiol; 1997 Aug; 78(2):660-73. PubMed ID: 9307103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do arm postures vary with the speed of reaching?
    Nishikawa KC; Murray ST; Flanders M
    J Neurophysiol; 1999 May; 81(5):2582-6. PubMed ID: 10322091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in motor cortex activity during reaching movements with similar hand paths but different arm postures.
    Scott SH; Kalaska JF
    J Neurophysiol; 1995 Jun; 73(6):2563-7. PubMed ID: 7666162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of varying task constraints on solutions to joint coordination in a sit-to-stand task.
    Scholz JP; Reisman D; Schöner G
    Exp Brain Res; 2001 Dec; 141(4):485-500. PubMed ID: 11810142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological Plausibility of Arm Postures Influences the Controllability of Robotic Arm Teleoperation.
    Mick S; Badets A; Oudeyer PY; Cattaert D; De Rugy A
    Hum Factors; 2022 Mar; 64(2):372-384. PubMed ID: 32809867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional kinematic analysis of influence of hand orientation and joint limits on the control of arm postures and movements.
    Wang X
    Biol Cybern; 1999 Jun; 80(6):449-63. PubMed ID: 10420570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A preferred pattern of joint coordination during arm movements with redundant degrees of freedom.
    Dounskaia N; Wang W
    J Neurophysiol; 2014 Sep; 112(5):1040-53. PubMed ID: 24872537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origins of the power law relation between movement velocity and curvature: modeling the effects of muscle mechanics and limb dynamics.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1996 Nov; 76(5):2853-60. PubMed ID: 8930238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of biomechanical factors on substructure of pointing movements.
    Dounskaia N; Wisleder D; Johnson T
    Exp Brain Res; 2005 Aug; 164(4):505-16. PubMed ID: 15856206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riemannian geometric approach to human arm dynamics, movement optimization, and invariance.
    Biess A; Flash T; Liebermann DG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031927. PubMed ID: 21517543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor control of voluntary arm movements. Kinematic and modelling study.
    Corradini ML; Gentilucci M; Leo T; Rizzolatti G
    Biol Cybern; 1992; 67(4):347-60. PubMed ID: 1515513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hand trajectory invariance in reaching movements involving the trunk.
    Adamovich SV; Archambault PS; Ghafouri M; Levin MF; Poizner H; Feldman AG
    Exp Brain Res; 2001 Jun; 138(3):288-303. PubMed ID: 11460767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.