BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1121 related articles for article (PubMed ID: 15323486)

  • 1. Characterization of fluorocarbon-in-water emulsions with added triglyceride.
    Weers JG; Arlauskas RA; Tarara TE; Pelura TJ
    Langmuir; 2004 Aug; 20(18):7430-5. PubMed ID: 15323486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication, characterisation and stability of oil-in-water emulsions stabilised by solid lipid particles: the role of particle characteristics and emulsion microstructure upon Pickering functionality.
    Zafeiri I; Smith P; Norton IT; Spyropoulos F
    Food Funct; 2017 Jul; 8(7):2583-2591. PubMed ID: 28682410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of composition on biological fate of oil particles after intravenous injection of O/W lipid emulsions.
    Sakaeda T; Hirano K
    J Drug Target; 1998; 6(4):273-84. PubMed ID: 9894695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification.
    Saberi AH; Fang Y; McClements DJ
    J Colloid Interface Sci; 2013 Feb; 391():95-102. PubMed ID: 23116862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The redistribution of bulk aqueous phase phospholipids during thermal stressing of phospholipid-stabilized emulsions.
    Groves MJ; Herman CJ
    J Pharm Pharmacol; 1993 Jul; 45(7):592-6. PubMed ID: 8105050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorocarbon emulsions--the stability issue.
    Postel M; Riess JG; Weers JG
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(4):991-1005. PubMed ID: 7849970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure.
    Zúñiga RN; Skurtys O; Osorio F; Aguilera JM; Pedreschi F
    Carbohydr Polym; 2012 Oct; 90(2):1147-58. PubMed ID: 22840052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersed droplets as active fillers in fat-crystal network-stabilized water-in-oil emulsions.
    Rafanan R; Rousseau D
    Food Res Int; 2017 Sep; 99(Pt 1):355-362. PubMed ID: 28784493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative evaluation of the emulsifying properties of phosphatidylcholine after enzymatic acyl modification.
    Vikbjerg AF; Rusig JY; Jonsson G; Mu H; Xu X
    J Agric Food Chem; 2006 May; 54(9):3310-6. PubMed ID: 16637690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous transfer of phospholipid-coated oil-in-oil and water-in-oil micro-droplets through an oil/water interface.
    Yamada A; Yamanaka T; Hamada T; Hase M; Yoshikawa K; Baigl D
    Langmuir; 2006 Nov; 22(24):9824-8. PubMed ID: 17106968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed fluorocarbon/hydrocarbon molecular dowels help protect concentrated fluorocarbon emulsions with large size droplets against coalescence.
    Cornélus C; Krafft MP; Riess JG
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(4):1267-72. PubMed ID: 7849932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pickering emulsions stabilized by a lipophilic surfactant and hydrophilic platelike particles.
    Wang J; Yang F; Tan J; Liu G; Xu J; Sun D
    Langmuir; 2010 Apr; 26(8):5397-404. PubMed ID: 20020723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic study of aggregation of milk protein and/or surfactant-stabilized oil-in-water emulsions by sedimentation field-flow fractionation.
    Kenta S; Raikos V; Vagena A; Sevastos D; Kapolos J; Koliadima A; Karaiskakis G
    J Chromatogr A; 2013 Aug; 1305():221-9. PubMed ID: 23899382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term stability of crystal-stabilized water-in-oil emulsions.
    Ghosh S; Pradhan M; Patel T; Haj-Shafiei S; Rousseau D
    J Colloid Interface Sci; 2015 Dec; 460():247-57. PubMed ID: 26343977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effect of silica nanoparticles and charged surfactants in the formation and stability of submicron oil-in-water emulsions.
    Ghouchi Eskandar N; Simovic S; Prestidge CA
    Phys Chem Chem Phys; 2007 Dec; 9(48):6426-34. PubMed ID: 18060173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of surfactant sucrose ester on physical properties of dairy whipped emulsions in relation to those of O/W interfacial layers.
    Tual A; Bourles E; Barey P; Houdoux A; Desprairies M; Courthaudon JL
    J Colloid Interface Sci; 2006 Mar; 295(2):495-503. PubMed ID: 16213513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally induced gelling of oil-in-water emulsions comprising partially crystallized droplets: the impact of interfacial crystals.
    Thivilliers F; Laurichesse E; Saadaoui H; Leal-Calderon F; Schmitt V
    Langmuir; 2008 Dec; 24(23):13364-75. PubMed ID: 18956850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate.
    Taha A; Hu T; Zhang Z; Bakry AM; Khalifa I; Pan S; Hu H
    Ultrason Sonochem; 2018 Dec; 49():283-293. PubMed ID: 30172463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of citral in oil-in-water emulsions prepared with medium-chain triacylglycerols and triacetin.
    Choi SJ; Decker EA; Henson L; Popplewell LM; McClements DJ
    J Agric Food Chem; 2009 Dec; 57(23):11349-53. PubMed ID: 19891478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.