These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 15323546)
1. Roles of noncoordinated aromatic residues in redox regulation of cytochrome c3 from Desulfovibrio vulgaris Miyazaki F. Takayama Y; Harada E; Kobayashi R; Ozawa K; Akutsu H Biochemistry; 2004 Aug; 43(34):10859-66. PubMed ID: 15323546 [TBL] [Abstract][Full Text] [Related]
2. Strategic roles of axial histidines in structure formation and redox regulation of tetraheme cytochrome c3. Takayama Y; Werbeck ND; Komori H; Morita K; Ozawa K; Higuchi Y; Akutsu H Biochemistry; 2008 Sep; 47(36):9405-15. PubMed ID: 18702516 [TBL] [Abstract][Full Text] [Related]
3. Redox characterization of Geobacter sulfurreducens cytochrome c7: physiological relevance of the conserved residue F15 probed by site-specific mutagenesis. Pessanha M; Londer YY; Long WC; Erickson J; Pokkuluri PR; Schiffer M; Salgueiro CA Biochemistry; 2004 Aug; 43(30):9909-17. PubMed ID: 15274645 [TBL] [Abstract][Full Text] [Related]
4. Replacement of lysine 45 by uncharged residues modulates the redox-Bohr effect in tetraheme cytochrome c3 of Desulfovibrio vulgaris (Hildenborough). Saraiva LM; Salgueiro CA; da Costa PN; Messias AC; LeGall J; van Dongen WM; Xavier AV Biochemistry; 1998 Sep; 37(35):12160-5. PubMed ID: 9724528 [TBL] [Abstract][Full Text] [Related]
5. Redox interaction of cytochrome c3 with [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. Yahata N; Saitoh T; Takayama Y; Ozawa K; Ogata H; Higuchi Y; Akutsu H Biochemistry; 2006 Feb; 45(6):1653-62. PubMed ID: 16460012 [TBL] [Abstract][Full Text] [Related]
6. Redox-coupled conformational alternations in cytochrome c(3) from D. vulgaris Miyazaki F on the basis of its reduced solution structure. Harada E; Fukuoka Y; Ohmura T; Fukunishi A; Kawai G; Fujiwara T; Akutsu H J Mol Biol; 2002 Jun; 319(3):767-78. PubMed ID: 12054869 [TBL] [Abstract][Full Text] [Related]
7. Key role of phenylalanine 20 in cytochrome c3: structure, stability, and function studies. Dolla A; Arnoux P; Protasevich I; Lobachov V; Brugna M; Giudici-Orticoni MT; Haser R; Czjzek M; Makarov A; Bruschi M Biochemistry; 1999 Jan; 38(1):33-41. PubMed ID: 9890880 [TBL] [Abstract][Full Text] [Related]
8. Redox chemistry of low-pH forms of tetrahemic cytochrome c3. Santos M; Dos Santos MM; Gonçalves ML; Costa C; Romão JC; Moura JJ J Inorg Biochem; 2006 Dec; 100(12):2009-16. PubMed ID: 17084898 [TBL] [Abstract][Full Text] [Related]
9. Tyrosine 64 of cytochrome c553 is required for electron exchange with formate dehydrogenase in Desulfovibrio vulgaris Hildenborough. Sebban-Kreuzer C; Blackledge M; Dolla A; Marion D; Guerlesquin F Biochemistry; 1998 Jun; 37(23):8331-40. PubMed ID: 9622485 [TBL] [Abstract][Full Text] [Related]
10. Role of the aromatic ring of Tyr43 in tetraheme cytochrome c(3) from Desulfovibrio vulgaris Miyazaki F. Ozawa K; Takayama Y; Yasukawa F; Ohmura T; Cusanovich MA; Tomimoto Y; Ogata H; Higuchi Y; Akutsu H Biophys J; 2003 Nov; 85(5):3367-74. PubMed ID: 14581238 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of the oxidised and reduced acidic cytochrome c3from Desulfovibrio africanus. Nørager S; Legrand P; Pieulle L; Hatchikian C; Roth M J Mol Biol; 1999 Jul; 290(4):881-902. PubMed ID: 10398589 [TBL] [Abstract][Full Text] [Related]
12. Structural and kinetic studies of the Y73E mutant of octaheme cytochrome c3 (Mr = 26 000) from Desulfovibrio desulfuricans Norway. Aubert C; Giudici-Orticoni MT; Czjzek M; Haser R; Bruschi M; Dolla A Biochemistry; 1998 Feb; 37(8):2120-30. PubMed ID: 9485359 [TBL] [Abstract][Full Text] [Related]
13. Binding of ligands originates small perturbations on the microscopic thermodynamic properties of a multicentre redox protein. Salgueiro CA; Morgado L; Fonseca B; Lamosa P; Catarino T; Turner DL; Louro RO FEBS J; 2005 May; 272(9):2251-60. PubMed ID: 15853810 [TBL] [Abstract][Full Text] [Related]
14. Ferredoxin electron transfer site on cytochrome c3. Structural hypothesis of an intramolecular electron transfer pathway within a tetra-heme cytochrome. Dolla A; Guerlesquin F; Bruschi M; Haser R J Mol Recognit; 1991 Feb; 4(1):27-33. PubMed ID: 1657066 [TBL] [Abstract][Full Text] [Related]
15. Role of the tetrahemic subunit in Desulfovibrio vulgaris hildenborough formate dehydrogenase. ElAntak L; Dolla A; Durand MC; Bianco P; Guerlesquin F Biochemistry; 2005 Nov; 44(45):14828-34. PubMed ID: 16274230 [TBL] [Abstract][Full Text] [Related]
16. Electron transfer from HiPIP to the photooxidized tetraheme cytochrome subunit of Allochromatium vinosum reaction center: new insights from site-directed mutagenesis and computational studies. Venturoli G; Mamedov MD; Mansy SS; Musiani F; Strocchi M; Francia F; Semenov AY; Cowan JA; Ciurli S Biochemistry; 2004 Jan; 43(2):437-45. PubMed ID: 14717598 [TBL] [Abstract][Full Text] [Related]
17. Functional roles of the heme architecture and its environment in tetraheme cytochrome c. Akutsu H; Takayama Y Acc Chem Res; 2007 Mar; 40(3):171-8. PubMed ID: 17370988 [TBL] [Abstract][Full Text] [Related]
18. Direct voltammetric observation of redox driven changes in axial coordination and intramolecular rearrangement of the phenylalanine-82-histidine variant of yeast iso-1-cytochrome c. Feinberg BA; Liu X; Ryan MD; Schejter A; Zhang C; Margoliash E Biochemistry; 1998 Sep; 37(38):13091-101. PubMed ID: 9748315 [TBL] [Abstract][Full Text] [Related]
20. Regulation of the redox order of four hemes by pH in cytochrome c3 from D. vulgaris Miyazaki F. Park JS; Ohmura T; Kano K; Sagara T; Niki K; Kyogoku Y; Akutsu H Biochim Biophys Acta; 1996 Mar; 1293(1):45-54. PubMed ID: 8652627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]