BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15323547)

  • 1. Resonance Raman analysis of the mechanism of energy storage and chromophore distortion in the primary visual photoproduct.
    Yan EC; Ganim Z; Kazmi MA; Chang BS; Sakmar TP; Mathies RA
    Biochemistry; 2004 Aug; 43(34):10867-76. PubMed ID: 15323547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy.
    Pan D; Mathies RA
    Biochemistry; 2001 Jul; 40(26):7929-36. PubMed ID: 11425321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman microprobe spectroscopy of rhodopsin mutants: effect of substitutions in the third transmembrane helix.
    Lin SW; Sakmar TP; Franke RR; Khorana HG; Mathies RA
    Biochemistry; 1992 Jun; 31(22):5105-11. PubMed ID: 1351402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation analysis of glu181 and ser186 in the metarhodopsin I state.
    Ishiguro M
    Chembiochem; 2004 Sep; 5(9):1204-9. PubMed ID: 15368571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved resonance Raman analysis of chromophore structural changes in the formation and decay of rhodopsin's BSI intermediate.
    Pan D; Ganim Z; Kim JE; Verhoeven MA; Lugtenburg J; Mathies RA
    J Am Chem Soc; 2002 May; 124(17):4857-64. PubMed ID: 11971736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A resonance Raman study of the C=N configurations of octopus rhodopsin, bathorhodopsin, and isorhodopsin.
    Huang L; Deng H; Weng G; Koutalos Y; Ebrey T; Groesbeek M; Lugtenburg J; Tsuda M; Callender RH
    Biochemistry; 1996 Jul; 35(26):8504-10. PubMed ID: 8679611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete assignment of the hydrogen out-of-plane wagging vibrations of bathorhodopsin: chromophore structure and energy storage in the primary photoproduct of vision.
    Palings I; van den Berg EM; Lugtenburg J; Mathies RA
    Biochemistry; 1989 Feb; 28(4):1498-507. PubMed ID: 2719913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin.
    Jäger F; Fahmy K; Sakmar TP; Siebert F
    Biochemistry; 1994 Sep; 33(36):10878-82. PubMed ID: 7916209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic evidence for altered chromophore--protein interactions in low-temperature photoproducts of the visual pigment responsible for congenital night blindness.
    Fahmy K; Zvyaga TA; Sakmar TP; Siebert F
    Biochemistry; 1996 Nov; 35(47):15065-73. PubMed ID: 8942673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of Glu181 in the photoactivation of rhodopsin.
    Lüdeke S; Beck M; Yan EC; Sakmar TP; Siebert F; Vogel R
    J Mol Biol; 2005 Oct; 353(2):345-56. PubMed ID: 16169009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
    Smith SO; Courtin J; de Groot H; Gebhard R; Lugtenburg J
    Biochemistry; 1991 Jul; 30(30):7409-15. PubMed ID: 1649627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water and peptide backbone structure in the active center of bovine rhodopsin.
    Nagata T; Terakita A; Kandori H; Kojima D; Shichida Y; Maeda A
    Biochemistry; 1997 May; 36(20):6164-70. PubMed ID: 9166788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anions stabilize a metarhodopsin II-like photoproduct with a protonated Schiff base.
    Vogel R; Fan GB; Siebert F; Sheves M
    Biochemistry; 2001 Nov; 40(44):13342-52. PubMed ID: 11683644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts.
    Pande C; Pande A; Yue KT; Callender R; Ebrey TG; Tsuda M
    Biochemistry; 1987 Aug; 26(16):4941-7. PubMed ID: 3663635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movement of the retinylidene Schiff base counterion in rhodopsin by one helix turn reverses the pH dependence of the metarhodopsin I to metarhodopsin II transition.
    Zvyaga TA; Min KC; Beck M; Sakmar TP
    J Biol Chem; 1993 Mar; 268(7):4661-7. PubMed ID: 8444840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance Raman studies of the HOOP modes in octopus bathorhodopsin with deuterium-labeled retinal chromophores.
    Deng H; Manor D; Weng G; Rath P; Koutalos Y; Ebrey T; Gebhard R; Lugtenburg J; Tsuda M; Callender RH
    Biochemistry; 1991 May; 30(18):4495-502. PubMed ID: 2021639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of the Schiff base mode in bovine rhodopsin and bathorhodopsin.
    Deng H; Callender RH
    Biochemistry; 1987 Nov; 26(23):7418-26. PubMed ID: 3427083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman spectroscopy of squid and bovine visual pigments: the primary photochemistry in visual transduction.
    Sulkes M; Lewis A; Marcus MA
    Biochemistry; 1978 Oct; 17(22):4712-22. PubMed ID: 728380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman studies of the primary photochemical event in visual pigments.
    Aton B; Doukas AG; Narva D; Callender RH; Dinur U; Honig B
    Biophys J; 1980 Jan; 29(1):79-94. PubMed ID: 7260248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.