These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Universal ratio of TTLS-phonon coupling constants in low-temperature amorphous solids. Zhou D J Phys Condens Matter; 2020 Jan; 32(5):055704. PubMed ID: 31675353 [TBL] [Abstract][Full Text] [Related]
4. Heat conductivity of amorphous solids: simulation results on model structures. Sheng P; Zhou M Science; 1991 Aug; 253(5019):539-42. PubMed ID: 17745186 [TBL] [Abstract][Full Text] [Related]
5. Disordered solids without well-defined transverse phonons: the nature of hard-sphere glasses. Wang X; Zheng W; Wang L; Xu N Phys Rev Lett; 2015 Jan; 114(3):035502. PubMed ID: 25659006 [TBL] [Abstract][Full Text] [Related]
6. The origin of the boson peak and thermal conductivity plateau in low-temperature glasses. Lubchenko V; Wolynes PG Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1515-8. PubMed ID: 12578972 [TBL] [Abstract][Full Text] [Related]
7. Ultralow thermal conductivity in highly anion-defective aluminates. Wan C; Qu Z; He Y; Luan D; Pan W Phys Rev Lett; 2008 Aug; 101(8):085901. PubMed ID: 18764638 [TBL] [Abstract][Full Text] [Related]
8. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide. Lv W; Henry A Sci Rep; 2016 Oct; 6():35720. PubMed ID: 27767082 [TBL] [Abstract][Full Text] [Related]
9. Theory of sound attenuation in amorphous solids from nonaffine motions. Baggioli M; Zaccone A J Phys Condens Matter; 2022 Mar; 34(21):. PubMed ID: 35287118 [TBL] [Abstract][Full Text] [Related]
10. Phonon interpretation of the 'boson peak' in supercooled liquids. Grigera TS; MartÃn-Mayor V; Parisi G; Verrocchio P Nature; 2003 Mar; 422(6929):289-92. PubMed ID: 12646916 [TBL] [Abstract][Full Text] [Related]
11. Debye equation of state for fluid helium-3. Huang Y; Chen G; Arp V J Chem Phys; 2006 Aug; 125(5):054505. PubMed ID: 16942224 [TBL] [Abstract][Full Text] [Related]
12. Excess specific heat in evaporated amorphous silicon. Queen DR; Liu X; Karel J; Metcalf TH; Hellman F Phys Rev Lett; 2013 Mar; 110(13):135901. PubMed ID: 23581344 [TBL] [Abstract][Full Text] [Related]
13. Heat transport in model jammed solids. Vitelli V; Xu N; Wyart M; Liu AJ; Nagel SR Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021301. PubMed ID: 20365557 [TBL] [Abstract][Full Text] [Related]
14. Continuum limit of the vibrational properties of amorphous solids. Mizuno H; Shiba H; Ikeda A Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9767-E9774. PubMed ID: 29087941 [TBL] [Abstract][Full Text] [Related]
15. Sound attenuation in finite-temperature stable glasses. Wang L; Szamel G; Flenner E Soft Matter; 2020 Aug; 16(30):7165-7171. PubMed ID: 32671375 [TBL] [Abstract][Full Text] [Related]
16. Heat capacity, Raman, and Brillouin scattering studies of M2O-MgO-WO3-P2O5 glasses (M=K,Rb). Maczka M; Hanuza J; Baran J; Hushur A; Kojima S J Chem Phys; 2006 Dec; 125(24):244503. PubMed ID: 17199351 [TBL] [Abstract][Full Text] [Related]
17. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?]. Abramowicz JS; Kremkau FW; Merz E Ultraschall Med; 2012 Jun; 33(3):215-7. PubMed ID: 22700164 [TBL] [Abstract][Full Text] [Related]
18. Sound velocities of PbTe to 14 GPa: evidence for coupling between acoustic and optic phonons. Jacobsen MK; Liu W; Li B J Phys Condens Matter; 2013 Sep; 25(36):365402. PubMed ID: 23925068 [TBL] [Abstract][Full Text] [Related]
19. Examining the Validity of the Phonon Gas Model in Amorphous Materials. Lv W; Henry A Sci Rep; 2016 Dec; 6():37675. PubMed ID: 27917868 [TBL] [Abstract][Full Text] [Related]
20. Resonance phonon approach to phonon relaxation time and mean free path in one-dimensional nonlinear lattices. Xu L; Wang L Phys Rev E; 2017 Apr; 95(4-1):042138. PubMed ID: 28505770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]