These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 15323846)

  • 21. Strong coupling between surface plasmon polaritons and β-carotene in nanolayered system.
    Baieva S; Ihalainen JA; Toppari JJ
    J Chem Phys; 2013 Jan; 138(4):044707. PubMed ID: 23387615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures.
    Vasa P; Pomraenke R; Schwieger S; Mazur YI; Kunets V; Srinivasan P; Johnson E; Kihm JE; Kim DS; Runge E; Salamo G; Lienau C
    Phys Rev Lett; 2008 Sep; 101(11):116801. PubMed ID: 18851308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons.
    Rahman SS; Klein T; Klembt S; Gutowski J; Hommel D; Sebald K
    Sci Rep; 2016 Oct; 6():34392. PubMed ID: 27698359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tailoring Dispersion of Room-Temperature Exciton-Polaritons with Perovskite-Based Subwavelength Metasurfaces.
    Dang NHM; Gerace D; Drouard E; Trippé-Allard G; Lédée F; Mazurczyk R; Deleporte E; Seassal C; Nguyen HS
    Nano Lett; 2020 Mar; 20(3):2113-2119. PubMed ID: 32074449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Observation of Tunable Charged Exciton Polaritons in Hybrid Monolayer WS
    Cuadra J; Baranov DG; Wersäll M; Verre R; Antosiewicz TJ; Shegai T
    Nano Lett; 2018 Mar; 18(3):1777-1785. PubMed ID: 29369640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aluminum Nanoantenna Complexes for Strong Coupling between Excitons and Localized Surface Plasmons.
    Eizner E; Avayu O; Ditcovski R; Ellenbogen T
    Nano Lett; 2015 Sep; 15(9):6215-21. PubMed ID: 26258257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultra hybrid plasmonics: strong coupling of plexcitons with plasmon polaritons.
    Balci S; Kocabas C
    Opt Lett; 2015 Jul; 40(14):3424-7. PubMed ID: 26176485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tunable Valley Polarized Plasmon-Exciton Polaritons in Two-Dimensional Semiconductors.
    Ding B; Zhang Z; Chen YH; Zhang Y; Blaikie RJ; Qiu M
    ACS Nano; 2019 Feb; 13(2):1333-1341. PubMed ID: 30726051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strongly coupled exciton-surface plasmon polariton from excited-subband transitions of single-walled carbon nanotubes.
    Zhou W; Zhang X; Zhang Y; Tian C; Xu C
    Opt Express; 2017 Dec; 25(25):32142-32149. PubMed ID: 29245878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons.
    Wersäll M; Cuadra J; Antosiewicz TJ; Balci S; Shegai T
    Nano Lett; 2017 Jan; 17(1):551-558. PubMed ID: 28005384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strong coupling of surface plasmon polaritons and ensembles of dye molecules.
    Tumkur TU; Zhu G; Noginov MA
    Opt Express; 2016 Feb; 24(4):3921-8. PubMed ID: 26907045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics of exciton-polaritons in ZnO-based hybrid microcavities.
    Chen JR; Lu TC; Wu YC; Lin SC; Hsieh WF; Wang SC; Deng H
    Opt Express; 2011 Feb; 19(5):4101-12. PubMed ID: 21369239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of microcavity polaritons in ZnO nanoparticles.
    Liu X; Goldberg D; Menon VM
    Opt Express; 2013 Sep; 21(18):20620-5. PubMed ID: 24103934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermalization and cooling of plasmon-exciton polaritons: towards quantum condensation.
    Rodriguez SR; Feist J; Verschuuren MA; Garcia Vidal FJ; Gómez Rivas J
    Phys Rev Lett; 2013 Oct; 111(16):166802. PubMed ID: 24182291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong Coupling between Surface Plasmon Polaritons and Molecular Vibrations.
    Memmi H; Benson O; Sadofev S; Kalusniak S
    Phys Rev Lett; 2017 Mar; 118(12):126802. PubMed ID: 28388189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revealing Strong Plasmon-Exciton Coupling between Nanogap Resonators and Two-Dimensional Semiconductors at Ambient Conditions.
    Qin J; Chen YH; Zhang Z; Zhang Y; Blaikie RJ; Ding B; Qiu M
    Phys Rev Lett; 2020 Feb; 124(6):063902. PubMed ID: 32109119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Colloidal Assembly of Au-Quantum Dot-Au Sandwiched Nanostructures with Strong Plasmon-Exciton Coupling.
    Luo Y; Wang Y; Liu M; Zhu H; Chen O; Zou S; Zhao J
    J Phys Chem Lett; 2020 Apr; 11(7):2449-2456. PubMed ID: 32155339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strong Exciton-Plasmon Coupling in Silver Nanowire Nanocavities.
    Beane G; Brown BS; Johns P; Devkota T; Hartland GV
    J Phys Chem Lett; 2018 Apr; 9(7):1676-1681. PubMed ID: 29547298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe
    Stührenberg M; Munkhbat B; Baranov DG; Cuadra J; Yankovich AB; Antosiewicz TJ; Olsson E; Shegai T
    Nano Lett; 2018 Sep; 18(9):5938-5945. PubMed ID: 30081635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active control of the strong coupling regime between porphyrin excitons and surface plasmon polaritons.
    Berrier A; Cools R; Arnold C; Offermans P; Crego-Calama M; Brongersma SH; Gómez-Rivas J
    ACS Nano; 2011 Aug; 5(8):6226-32. PubMed ID: 21776964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.