These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15323916)

  • 21. Nonlinear absorption of intense femtosecond laser radiation in air.
    Kartashov DV; Kirsanov AV; Kiselev AM; Stepanov AN; Bochkarev NN; Ponomarev YN; Tikhomirov BA
    Opt Express; 2006 Aug; 14(17):7552-8. PubMed ID: 19529121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-focusing in air with phase-stabilized few-cycle light pulses.
    Laban DE; Wallace WC; Glover RD; Sang RT; Kielpinski D
    Opt Lett; 2010 May; 35(10):1653-5. PubMed ID: 20479839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organizing multiple femtosecond filaments in air.
    Méchain G; Couairon A; Franco M; Prade B; Mysyrowicz A
    Phys Rev Lett; 2004 Jul; 93(3):035003. PubMed ID: 15323829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supercontinuum emission and enhanced self-guiding of infrared femtosecond filaments sustained by third-harmonic generation in air.
    Bergé L; Skupin S; Méjean G; Kasparian J; Yu J; Frey S; Salmon E; Wolf JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016602. PubMed ID: 15697742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Postionization regimes of femtosecond laser pulses self-channeling in air.
    Champeaux S; Bergé L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046604. PubMed ID: 15903803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of a conducting channel in air by self-guided femtosecond laser pulses.
    Tzortzakis S; Franco MA; André YB; Chiron A; Lamouroux B; Prade BS; Mysyrowicz A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):R3505-7. PubMed ID: 11970269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses.
    Aközbek N; Iwasaki A; Becker A; Scalora M; Chin SL; Bowden CM
    Phys Rev Lett; 2002 Sep; 89(14):143901. PubMed ID: 12366048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Filamentation of femtosecond light pulses in the air: turbulent cells versus long-range clusters.
    Skupin S; Bergé L; Peschel U; Lederer F; Méjean G; Yu J; Kasparian J; Salmon E; Wolf JP; Rodriguez M; Wöste L; Bourayou R; Sauerbrey R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046602. PubMed ID: 15600542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. White-light filaments for atmospheric analysis.
    Kasparian J; Rodriguez M; Méjean G; Yu J; Salmon E; Wille H; Bourayou R; Frey S; Andre YB; Mysyrowicz A; Sauerbrey R; Wolf JP; Wöste L
    Science; 2003 Jul; 301(5629):61-4. PubMed ID: 12843384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transmission of intense femtosecond laser pulses into dielectrics.
    Peñano JR; Sprangle P; Hafizi B; Manheimer W; Zigler A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036412. PubMed ID: 16241584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations.
    Skupin S; Stibenz G; Bergé L; Lederer F; Sokollik T; Schnürer M; Zhavoronkov N; Steinmeyer G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056604. PubMed ID: 17280003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. (3+1)-dimensional numerical simulations of femtosecond laser filaments in air: toward a quantitative agreement with experiments.
    Champeaux S; Bergé L; Gordon D; Ting A; Peñano J; Sprangle P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036406. PubMed ID: 18517532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Limitations in ionization-induced compression of femtosecond laser pulses due to spatio-temporal couplings.
    Beaurepaire B; Guénot D; Vernier A; Böhle F; Perrier M; Jullien A; Lopez-Martens R; Lifschitz A; Faure J
    Opt Express; 2016 May; 24(9):9693-705. PubMed ID: 27137583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple filamentation of terawatt laser pulses in air.
    Bergé L; Skupin S; Lederer F; Méjean G; Yu J; Kasparian J; Salmon E; Wolf JP; Rodriguez M; Wöste L; Bourayou R; Sauerbrey R
    Phys Rev Lett; 2004 Jun; 92(22):225002. PubMed ID: 15245231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intracavity ionization and pulse formation in femtosecond enhancement cavities.
    Carlson DR; Lee J; Mongelli J; Wright EM; Jones RJ
    Opt Lett; 2011 Aug; 36(15):2991-3. PubMed ID: 21808382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sub-1.5-cycle pulses from a single filament.
    Steingrube DS; Kretschmar M; Hoff D; Schulz E; Binhammer T; Hansinger P; Paulus GG; Morgner U; Kovačev M
    Opt Express; 2012 Oct; 20(21):24049-58. PubMed ID: 23188372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Moving focus in the propagation of ultrashort laser pulses in air.
    Brodeur A; Chien CY; Ilkov FA; Chin SL; Kosareva OG; Kandidov VP
    Opt Lett; 1997 Mar; 22(5):304-6. PubMed ID: 18183183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elongation of femtosecond filament by molecular alignment in air.
    Cai H; Wu J; Li H; Bai X; Zeng H
    Opt Express; 2009 Nov; 17(23):21060-5. PubMed ID: 19997344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct phase and amplitude characterization of femtosecond laser pulses undergoing filamentation in air.
    Odhner J; Levis RJ
    Opt Lett; 2012 May; 37(10):1775-7. PubMed ID: 22627567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pulse duration dependent nonlinear propagation of a focused femtosecond laser pulse in fused silica.
    Sun Q; Asahi H; Nishijima Y; Murazawa N; Ueno K; Misawa H
    Opt Express; 2010 Nov; 18(24):24495-503. PubMed ID: 21164796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.