BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15323955)

  • 1. Direct determination of vibrational density of states change on ligand binding to a protein.
    Balog E; Becker T; Oettl M; Lechner R; Daniel R; Finney J; Smith JC
    Phys Rev Lett; 2004 Jul; 93(2):028103. PubMed ID: 15323955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational softening of a protein on ligand binding.
    Balog E; Perahia D; Smith JC; Merzel F
    J Phys Chem B; 2011 Jun; 115(21):6811-7. PubMed ID: 21553905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory and normal-mode analysis of change in protein vibrational dynamics on ligand binding.
    Moritsugu K; Njunda BM; Smith JC
    J Phys Chem B; 2010 Jan; 114(3):1479-85. PubMed ID: 20043649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary neutron diffraction studies of Escherichia coli dihydrofolate reductase bound to the anticancer drug methotrexate.
    Bennett BC; Meilleur F; Myles DA; Howell EE; Dealwis CG
    Acta Crystallogr D Biol Crystallogr; 2005 May; 61(Pt 5):574-9. PubMed ID: 15858267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand binding to a high-energy partially unfolded protein.
    Kasper JR; Park C
    Protein Sci; 2015 Jan; 24(1):129-37. PubMed ID: 25367157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutron diffraction studies of Escherichia coli dihydrofolate reductase complexed with methotrexate.
    Bennett B; Langan P; Coates L; Mustyakimov M; Schoenborn B; Howell EE; Dealwis C
    Proc Natl Acad Sci U S A; 2006 Dec; 103(49):18493-8. PubMed ID: 17130456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational heterogeneity and low-frequency vibrational modes of proteins.
    Balog E; Smith JC; Perahia D
    Phys Chem Chem Phys; 2006 Dec; 8(47):5543-8. PubMed ID: 17136269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics and solvent effects on substrate and cofactor binding in Escherichia coli chromosomal dihydrofolate reductase.
    Grubbs J; Rahmanian S; DeLuca A; Padmashali C; Jackson M; Duff MR; Howell EE
    Biochemistry; 2011 May; 50(18):3673-85. PubMed ID: 21462996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics and kinetics of ligand-protein binding studied with the weighted histogram analysis method and simulated annealing.
    Bouzida D; Arthurs S; Colson AB; Freer ST; Gehlhaar DK; Larson V; Luty BA; Rejto PA; Rose PW; Verkhivker GM
    Pac Symp Biocomput; 1999; ():426-37. PubMed ID: 10380216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass spectrometry on hydrogen/deuterium exchange of dihydrofolate reductase: effects of ligand binding.
    Yamamoto T; Izumi S; Gekko K
    J Biochem; 2004 Jun; 135(6):663-71. PubMed ID: 15213241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing protein dimerizers: the importance of ligand conformational equilibria.
    Carlson JC; Kanter A; Thuduppathy GR; Cody V; Pineda PE; McIvor RS; Wagner CR
    J Am Chem Soc; 2003 Feb; 125(6):1501-7. PubMed ID: 12568609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards understanding the mechanisms of molecular recognition by computer simulations of ligand-protein interactions.
    Verkhivker GM; Rejto PA; Bouzida D; Arthurs S; Colson AB; Freer ST; Gehlhaar DK; Larson V; Luty BA; Marrone T; Rose PW
    J Mol Recognit; 1999; 12(6):371-89. PubMed ID: 10611647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refolding of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study.
    Hoeltzli SD; Frieden C
    Biochemistry; 1998 Jan; 37(1):387-98. PubMed ID: 9425060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calorimetric studies of ligand binding in R67 dihydrofolate reductase.
    Jackson M; Chopra S; Smiley RD; Maynord PO; Rosowsky A; London RE; Levy L; Kalman TI; Howell EE
    Biochemistry; 2005 Sep; 44(37):12420-33. PubMed ID: 16156655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of site-directed spin labeling for characterizing protein-ligand complexes using simulated restraints.
    Constantine KL
    Biophys J; 2001 Sep; 81(3):1275-84. PubMed ID: 11509344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are homology models sufficiently good for free-energy simulations?
    Genheden S
    J Chem Inf Model; 2012 Nov; 52(11):3013-21. PubMed ID: 23113602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-mannose-type glycan modifications of dihydrofolate reductase using glycan-methotrexate conjugates.
    Totani K; Matsuo I; Ihara Y; Ito Y
    Bioorg Med Chem; 2006 Aug; 14(15):5220-9. PubMed ID: 16647263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further studies on the role of water in R67 dihydrofolate reductase.
    Timson MJ; Duff MR; Dickey G; Saxton AM; Reyes-De-Corcuera JI; Howell EE
    Biochemistry; 2013 Mar; 52(12):2118-27. PubMed ID: 23458706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of long-lived bound water molecules in complexes of human dihydrofolate reductase with methotrexate and NADPH.
    Meiering EM; Wagner G
    J Mol Biol; 1995 Mar; 247(2):294-308. PubMed ID: 7707376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new approach to the automatic identification of candidates for ligand receptor sites in proteins: (I). Search for pocket regions.
    Del Carpio CA; Takahashi Y; Sasaki S
    J Mol Graph; 1993 Mar; 11(1):23-9, 42. PubMed ID: 8499393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.