These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15324182)

  • 21. Dielectric laser electron acceleration in a dual pillar grating with a distributed Bragg reflector.
    Yousefi P; Schönenberger N; Mcneur J; Kozák M; Niedermayer U; Hommelhoff P
    Opt Lett; 2019 Mar; 44(6):1520-1523. PubMed ID: 30874691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding.
    Geddes CG; Toth CS; Van Tilborg J; Esarey E; Schroeder CB; Bruhwiler D; Nieter C; Cary J; Leemans WP
    Nature; 2004 Sep; 431(7008):538-41. PubMed ID: 15457252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of the optical transmission by mixing the metallic and dielectric nanoparticles atop the silicon substrate.
    Yeh YM; Wang YS; Li JH
    Opt Express; 2011 Mar; 19 Suppl 2():A80-94. PubMed ID: 21445223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specular X-ray reflectivity and small angle neutron scattering for structure determination of ordered mesoporous dielectric films.
    Vogt BD; Lee HJ; Wu WL; Liu Y
    J Phys Chem B; 2005 Oct; 109(39):18445-50. PubMed ID: 16853375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct acceleration of electrons in a corrugated plasma waveguide.
    York AG; Milchberg HM; Palastro JP; Antonsen TM
    Phys Rev Lett; 2008 May; 100(19):195001. PubMed ID: 18518453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing X-ray generation by electron-beam-laser interaction in an optical bragg structure.
    Karagodsky V; Schieber D; Schächter L
    Phys Rev Lett; 2010 Jan; 104(2):024801. PubMed ID: 20366601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ray model for transmission of metallic-dielectric hollow bent cylindrical waveguides.
    Mendlovic D; Goldenberg E; Ruschin S; Dror J; Croitoru N
    Appl Opt; 1989 Feb; 28(4):708-12. PubMed ID: 20548546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy recovery in an optical linear collider.
    Schächter L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016504. PubMed ID: 15324181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupling efficiency of probes in emission-mode scanning near-field optical microscopy.
    Alvarez L; Xiao M
    J Microsc; 2008 Feb; 229(Pt 2):371-6. PubMed ID: 18304099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Propagation characteristics and guiding of a high-power microwave in plasma waveguide.
    Ito H; Rajyaguru C; Yugami N; Nishida Y; Hosoya T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066406. PubMed ID: 15244744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Image brightening in samples of high dielectric constant.
    Tropp J
    J Magn Reson; 2004 Mar; 167(1):12-24. PubMed ID: 14987593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laser-based acceleration of nonrelativistic electrons at a dielectric structure.
    Breuer J; Hommelhoff P
    Phys Rev Lett; 2013 Sep; 111(13):134803. PubMed ID: 24116785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchical nanoparticle bragg mirrors: tandem and gradient architectures.
    Redel E; Huai C; Renner M; von Freymann G; Ozin GA
    Small; 2011 Dec; 7(24):3465-71. PubMed ID: 22009683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmonic band structures and optical properties of subwavelength metal/dielectric/metal Bragg waveguides.
    Li C; Zhou YS; Wang HY
    Opt Express; 2012 Mar; 20(7):7726-40. PubMed ID: 22453451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures.
    Leedle KJ; Ceballos A; Deng H; Solgaard O; Pease RF; Byer RL; Harris JS
    Opt Lett; 2015 Sep; 40(18):4344-7. PubMed ID: 26371932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator.
    Blumenfeld I; Clayton CE; Decker FJ; Hogan MJ; Huang C; Ischebeck R; Iverson R; Joshi C; Katsouleas T; Kirby N; Lu W; Marsh KA; Mori WB; Muggli P; Oz E; Siemann RH; Walz D; Zhou M
    Nature; 2007 Feb; 445(7129):741-4. PubMed ID: 17301787
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ellipsoidal particles driven by intensity gradients through viscous fluids.
    Ambjörnsson T; Apell SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031917. PubMed ID: 12689111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hollow hybrid plasmonic waveguide for nanoscale optical confinement with long-range propagation.
    Sharma T; Kumar M
    Appl Opt; 2014 Mar; 53(9):1954-7. PubMed ID: 24663475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental observation of direct particle acceleration by stimulated emission of radiation.
    Banna S; Berezovsky V; Schächter L
    Phys Rev Lett; 2006 Sep; 97(13):134801. PubMed ID: 17026038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.