These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15324187)

  • 1. Nonlinear Krönig-Penney model.
    Li W; Smerzi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016605. PubMed ID: 15324187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of repulsive Bose-Einstein condensates in a periodic potential.
    Bronski JC; Carr LD; Deconinck B; Kutz JN; Promislow K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036612. PubMed ID: 11308793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-component Bose-Einstein condensates in periodic potential.
    Kostov NA; Enol'skii VZ; Gerdjikov VS; Konotop VV; Salerno M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056617. PubMed ID: 15600789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bose-Einstein condensates in standing waves: the cubic nonlinear Schrödinger equation with a periodic potential.
    Bronski JC; Carr LD; Deconinck B; Kutz JN
    Phys Rev Lett; 2001 Feb; 86(8):1402-5. PubMed ID: 11290153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solitons and vortices in nonlinear two-dimensional photonic crystals of the Kronig-Penney type.
    Mayteevarunyoo T; Malomed BA; Roeksabutr A
    Opt Express; 2011 Aug; 19(18):17834-51. PubMed ID: 21935151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice solitons in self-defocusing optical media: analytical solutions of the nonlinear Kronig-Penney model.
    Kominis Y; Hizanidis K
    Opt Lett; 2006 Oct; 31(19):2888-90. PubMed ID: 16969412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrable pair-transition-coupled nonlinear Schrödinger equations.
    Ling L; Zhao LC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022924. PubMed ID: 26382492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feshbach resonance management for Bose-Einstein condensates.
    Kevrekidis PG; Theocharis G; Frantzeskakis DJ; Malomed BA
    Phys Rev Lett; 2003 Jun; 90(23):230401. PubMed ID: 12857240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical solitary wave solutions of the nonlinear Kronig-Penney model in photonic structures.
    Kominis Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066619. PubMed ID: 16907009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of attractive Bose-Einstein condensates in a periodic potential.
    Bronski JC; Carr LD; Carretero-González R; Deconinck B; Kutz JN; Promislow K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056615. PubMed ID: 11736124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential.
    Alfimov GL; Kevrekidis PG; Konotop VV; Salerno M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046608. PubMed ID: 12443350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piecewise linear emulator of the nonlinear Schrödinger equation and the resulting analytic solutions for Bose-Einstein condensates.
    Theodorakis S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066701. PubMed ID: 16241374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of stationary states in the cubic nonlinear Schrödinger equation: applications to the Bose-Einstein condensate.
    Carr LD; Kutz JN; Reinhardt WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066604. PubMed ID: 11415239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disk-shaped Bose-Einstein condensates in the presence of an harmonic trap and an optical lattice.
    Kapitula T; Kevrekidis PG; Frantzeskakis DJ
    Chaos; 2008 Jun; 18(2):023101. PubMed ID: 18601468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superfluidity versus disorder in the discrete nonlinear Schrödinger equation.
    Trombettoni A; Smerzi A; Bishop AR
    Phys Rev Lett; 2002 Apr; 88(17):173902. PubMed ID: 12005755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kronig-Penney model for periodically segmented waveguides.
    Stancil DD
    Appl Opt; 1996 Aug; 35(24):4767-71. PubMed ID: 21102899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface solitons in waveguide arrays: Analytical solutions.
    Kominis Y; Papadopoulos A; Hizanidis K
    Opt Express; 2007 Aug; 15(16):10041-51. PubMed ID: 19547354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localized gap-soliton trains of Bose-Einstein condensates in an optical lattice.
    Wang DL; Yan XH; Liu WM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026606. PubMed ID: 18850961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bipartite Kronig-Penney model with Dirac-delta potential scatterers.
    Smith TB; Principi A
    J Phys Condens Matter; 2020 Jan; 32(5):055502. PubMed ID: 31610525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: zero magnetic field.
    Kushwaha MS
    J Chem Phys; 2011 Sep; 135(12):124704. PubMed ID: 21974549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.